Brass And Nickel Work Together In This Magnetostrictive Earphone

When you go by a handle like [Simplifier], you’ve made a mission statement about your projects: that you’ll take complex processes and boil them down to their essence. So tackling the rebuilding of the humble speaker, a device he himself admits is “both simplified and optimized already,” would seem a bit off-topic. But as it turns out, the principle of magnetostriction can make the lowly speaker even simpler.

Most of us are familiar with the operation of a speaker. A powerful magnet sits at the center of a coil of wire, which is attached to a thin diaphragm. Current passing through the coil builds a magnetic field that moves the diaphragm, creating sound waves. Magnetostriction, on the other hand, is the phenomenon whereby ferromagnetic materials change shape in a magnetic field. To take advantage of this, [Simplifier] wound a coil of fine copper wire around a paper form, through which a nickel TIG electrode welding filler rod is passed. The nickel rod is anchored on one end and fixed to a thin brass disc on the other. Passing a current through the coil causes the rod to change length, vibrating the disc to make sound. Give it a listen in the video below; it sounds pretty good, and we love the old-time look of the turned oak handpiece and brass accouterments.

You may recall [Simplifier]’s recent attempt at a carbon rod microphone; while that worked well enough, it was unable to drive this earphone directly. If you need to understand a little more about magnetostriction, [Ben Krasnow] explained its use in anti-theft tags a couple of years back.

Continue reading “Brass And Nickel Work Together In This Magnetostrictive Earphone”

This V8 Makes A Shocking Amount Of Power

As a work of art, solenoid engines are an impressive display of electromagnetics in action. There is limited practical use for them though, so usually they are relegated to that realm and remain display pieces. This one from [Emiel] certainly looks like a work of art, too. It has eight solenoids, mimicking the look and internal workings of a traditional V8.

There’s a lot that has to go on to coordinate this many cylinders. Like an internal combustion engine, it takes precise timing in order to make sure that the “pistons” trigger in the correct order without interfering with each other through the shared driveshaft. For that, [Emiel] built two different circuit boards, one to control the firing of each solenoid and another to give positional feedback for the shaft. That’s all put inside a CNC-machined engine block, complete with custom-built connecting rods and shafts.

If you think this looks familiar, it’s because [Emiel] has become somewhat of an expert in the solenoid engine realm. He started off with a how-to for a single piston engine, then stepped it up with a V4 design after that. That leaves us wondering how many pistons the next design will have. Perhaps a solenoid version of the Volkswagen W12?

Continue reading “This V8 Makes A Shocking Amount Of Power”

Link Coupling Antenna Tuner Wordless Workshop

Remember “Wordless Workshop” in Popular Science? [Roy Doty] illustrated a household problem and the solution for it cobbled up in the main character’s garage workshop. We wonder what [Roy] would have done with YouTube? Maybe something like the video from [VE2TAE] and [VE2AEV] showing their link coupling antenna tuning build. You can watch the video after the break, and if you aren’t a fan of Jazz, you can mute the volume.

Like [Doty’s] cartoons, the video presumes you are going to have your own idea about dimensions and component values to fit your needs. But the construction is beautiful in its own right. The tubing wound into giant coils is impressive and brings back memories of the old days. However, the construction of the variable capacitors really got us excited. Big air variable caps may be hard to find, but the video makes them look easy to make.

A couple of nice looking knobs and panel meters make for a great looking tuner. With that spacing, we imagine it would handle full legal power without any difficulty at all. If you want to learn more about this type of tuner, [VK1OD] had a great page about it which seems to be defunct now. But the Internet Archive comes to our rescue, as usual.

The design is quite old, so even a 1934 copy of “Radio” can explain it (look on page 6). If you want to see a more wordy example of making variable capacitors — although they are smaller, the same principles apply — [N4DFP] has a good write up for that.

Of course, these days, most people expect their antenna tuning to be automatic. With some Lego, though, you could refit your manual one, if you like.

Continue reading “Link Coupling Antenna Tuner Wordless Workshop”

A Tin Can Phone, But With Magnets

The tin can phone is a staple of longitudinal wave demonstrations wherein a human voice vibrates the bottom of a soup can, and compression waves travel along a string to reproduce the speaker in another can at the other end. All the parts in this electrical demonstration are different, but the concept is the same.

Speakers are sound transducers that turn electrical impulses into air vibrations, but they generate electricity when their coil vibrates. Copper wires carry those impulses from one cup to another. We haven’t heard of anyone making a tin can phone amplifier, but the strictly passive route wasn’t working, so an op-amp does some messy boosting. The link and video demonstrate the parts and purposes inside these sound transducers in an approachable way. Each component is constructed in sequence so you can understand what is happening and make sense of the results.

Can someone make a tin can amplifier transformer? We’d like to see that. In another twist of dual-purpose electronics, did you know that LEDs can sense light?

Continue reading “A Tin Can Phone, But With Magnets”

Camcorder Viewfinder Converted To Diminutive Vector Display

We generally cast a skeptical eye at projects that claim some kind of superlative. If you go on about the “World’s Smallest” widget, the chances are pretty good that someone will point to a yet smaller version of the same thing. But in the case of what’s touted as “The world’s smallest vector monitor”, we’re willing to take that chance.

If you’ve seen any of [Arcade Jason]’s projects before, you’ll no doubt have noticed his abiding affection for vector displays. We’re OK with that; after all, many of the best machines from the Golden Age of arcade games such as Asteroids and Tempest were based on vector graphics. None so small as the current work, though, based as it is on the CRT from an old camcorder’s viewfinder. The tube appears to be about 3/4″ (19 mm) in diameter, and while it still had some of its original circuitry, the deflection coils had to be removed. In their place, [Jason] used a ferrite toroid with two windings, one for vertical and one for horizontal. Those were driven directly by a two-channel push-pull audio amplifier to make patterns on the screen. Skip to 15:30 in the video below to see the display playing [Jerobeam Fenderson]’s “Oscilloscope Music”.

As much as we’d love to see a tiny game of Battlezone played on the diminutive display, there’s only so much it can do. Maybe an analog version of this adorable digital oscilloscope would be possible?

Continue reading “Camcorder Viewfinder Converted To Diminutive Vector Display”

Progressive Or Thrash? How Metal Detectors Discriminate

Metal detecting is a fun pastime, even when all you can find is a little bit of peace and a whole lot of pop tabs. [Huygens Optics] has a VLF-based metal detector that offers much more feedback than just a beep or no beep. This thing is fancy enough to discriminate between types of metal and report back a numerical ID value from a corresponding range of conductivity.

Most pop tabs rated an ID of 76 or 77, so [Huygens Optics] started ignoring these until the day he found a platinum wedding band without looking at the ID readout. Turns out, the ring registered in the throwaway range. Now thoroughly intrigued by the detector’s ID system, [Huygens Optics] set up a test rig with an oscilloscope to see for himself how the thing was telling different metals apart. His valuable and sweeping video walk-through is hiding after the break.

A Very Low-Frequency (VLF) detector uses two coils, one to emit and one to receive. They are overlapped just enough so that the reception coil can’t see the emission coil’s magnetic field. This frees up the reception coil’s magnetic field to be interrupted only by third-party metal, i.e. hidden treasures in the ground.

Once [Huygens Optics] determined which coil was which, he started passing metal objects near the reception coil to see what happened on the ‘scope. Depending on the material type and the size and shape of the object, the waveform it produced showed a shift in phase from the emission coil’s waveform. This is pretty much directly translated to the ID readout — the higher the phase shift value, the higher the ID value.

We’ve picked up DIY metal detectors of all sizes over the years, but this one is the ATtiny-ist.

Continue reading “Progressive Or Thrash? How Metal Detectors Discriminate”

Solenoid Engine Adds Three “Pistons”

The earliest piston engines typically had only one cylinder, and at best, produced horsepower measured in single digits. But once you have a working engine, it’s a relatively short step to adding cylinders and increasing the power output. [Emiel] made a similar upgrade to one of his engines recently, upgrading it from one cylinder to four. But this isn’t an internal combustion engine, it gets its power from electric solenoids.

We featured his single-cylinder build about a month ago, and since then he’s been busy with this impressive upgrade. The new engine features four cylinders arranged in a V4 pattern. Of course, this greatly increases the mechanical complexity. To start, he had to machine a crankshaft to connect all four “pistons” to a shared output shaft. He also had to build a set of cams in order to time the firing of the cylinders properly, so they don’t work against one another.

The build is just as polished and impressive as the last, which is saying a lot. [Emiel] has a quality machine shop and built the entire motor from scratch, including winding the solenoids, machining the connecting rods and shafts, and building a very picturesque wooden base for the entire contraption to sit on. It’s definitely worth checking out.

Continue reading “Solenoid Engine Adds Three “Pistons””