iram

PCI I-RAM Working Without A PCI Slot

[Gnif] had a recent hard drive failure in his home server. When rebuilding his RAID array, he decided to update to the ZFS file system. While researching ZFS, [Gnif] learned that the file system allows for a small USB cache disk to greatly improve his disk performance. Since USB is rather slow, [Gnif] had an idea to try to use an old i-RAM PCI card instead.

The problem was that he didn’t have any free PCI slots left in his home server. It didn’t take long for [Gnif] to realize that the PCI card was only using the PCI slot for power. All of the data transfer is actually done via a SATA cable. [Gnif] decided that he could likely get by without an actual PCI slot with just a bit of hacking.

[Gnif] desoldered a PCI socket from an old faulty motherboard, losing half of the pins in the process. Luckily, the pins he needed still remained. [Gnif] knew that DDR memory can be very power-hungry. This meant that he couldn’t only solder one wire for each of the 3v, 5v, 12v, and ground pins. He had to connect all of them in order to share the current load. All in all, this ended up being about 20 pins. He later tested the current draw and found it reached as high as 1.2 amps, confirming his earlier decision. Finally, the reset pin needed to be pulled to 3.3V in order to make the disk accessible.

All of the wires from his adapter were run to Molex connectors. This allows [Gnif] to power the device from a computer power supply. All of the connections were covered in hot glue to prevent them from wriggling lose.

Computer Built Into A Board Uses Only 10 Watts

In the realm of low-powered desktop computers, there are some options such as the Raspberry Pi that usually come out on top. While they use only a few watts, these tend to be a little lackluster in the performance department and sometimes a full desktop computer is called for. [Emile] aka [Mux] is somewhat of an expert at pairing down the power requirements for desktop computers, and got his to run on just 10 watts. Not only that, but he installed the whole thing in a board and mounted it to his wall. (Google Translated from Dutch)

The computer itself is based on a MSI H81M-P33 motherboard and a Celeron G1820 dual-core processor with 8GB RAM. To keep the power requirements down even further, the motherboard was heavily modified. To power the stereo custom USB DAC, power amplifier board, and USB volume button boards were built and installed. The display is handled by an Optoma pico projector, and the 10-watt power requirement allows the computer to be passively cooled as well.

As impressive as the electronics are for this computer, the housing for it is equally so. Everything is mounted to the backside of an elegant piece of wood which has been purposefully carved out to hold each specific component. Custom speakers were carved as well, and the entire thing is mounted on the wall above the bed. The only electronics visible is the projector! It’s even more impressive than [Mux]’s first low-power computer.

Central European Computer Collecting

During Hackaday’s short trip to Czech, we were lucky enough to run into someone who had recently had one of his projects featured on Hackaday. It’s [Martin]’s multi-target IDE for 8-bit CPUs, written entirely in JavaScript, and a full development suite for anything with a 6502, 6800, 6809, Z80, 8080, and 8085. [Martin] was kind enough to sit down and give us the scoop on why he’s interested in old computers, and why he developed his 8-bit IDE project, ASM80.

[Martin] grew up in the days of computer magazines, and originally wanted to build his own computer. That plan didn’t work out, but his parents did get him a Speccy in 1986, but the love of old hardware is still there. Over the years, this evolved into computer collecting, with the old ZX Spectrum, an Commodore 64, ORICs, and Acorns rounding out his collection. As we learned at the Computeum, there the middle of Europe had computers that just aren’t seen on the English-speaking Internet, and [Martin]’s collection is no exception.

In addition to doing some very cool stuff for some very old computers, [Martin] also donated something to the Hackaday Hackaspace. It’s a PMI-80, a single board computer made for university computer science students, and basically a KIM-1, but based on a Czechoslovak clone of the Intel 8080 made by Tesla. There is 1k of RAM and 1k of ROM on this board, a calculator keypad, and a few seven segment displays. For the time, it was a great ‘student’ computer, and not really rare in Europe, but this is the first one I’ve seen on my side of the Atlantic.

You can see some pics of the PMI-80 below with [Martin]’s interview. [Martin] also promised to write-up a short history of classic central european computers, a subject there isn’t much written about in the anglosphere. We’ll post a link to that when he finishes that up.

Continue reading “Central European Computer Collecting”

A 4-bit Computer From Discrete Transistors

Anyone reading this uses computers, and a few very cool people have built their own computer out of chips, [zaphod] is doing something even cooler over on hackaday.io: he’s building a computer from discrete transistors.

Building a computer from individual components without chips isn’t something new – Minecraft players who aren’t into cheaty command blocks do it all the time, and there have been a few real-life builds that have rocked our socks. [zaphod] is following in this hallowed tradition by building a four-bit computer, complete with CPU, RAM, and ROM from transistors, diodes, resistors, wire, and a lot of solder.

The ROM for the computer is just a bunch of 16 DIP switches and 128 diodes, giving this computer 128 bits of storage. the RAM for this project is a bit of a hack – it’s an Arduino, but that’s only because [zaphod] doesn’t want to solder 640 transistors just yet. This setup does have its advantages, though: the entire contents of memory can be dumped to a computer through a serial monitor. The ALU is a 4-bit ripple-carry adder/subtractor, with plans for a comparison unit that will be responsible for JMP.

The project hasn’t been without its problems – the first design of the demux for the ROM access logic resulted in a jungle of wires, gates, and connections that [zaphod] couldn’t get a usable signal out of because of the limited gate fan-out of his gates. After looking at the problem, [zaphod] decided to look at how real demuxes were constructed, and eventually hit upon the correct way of doing things – inverters and ANDs.

It’s a beautiful project, and something that [zaphod] has been working for months on. He’s getting close to complete, if you don’t count soldering up the RAM, and already has a crude Larson scanner worked out.

The KIM-1 Computer Minified

The KIM-1 wasn’t the first microcomputer available to computer hobbyists and other electron aficionados, but it was the first one that was cheap. It was also exceedingly simple, with just a 6502 CPU, a little more than 1k of RAM, 2k of ROM, a hexadecimal keypad and a few seven-segment displays. Still, a lot of software was written for this machine, and one of these boards can be found in every computer history museum.

[Oscar] thought the KIM-1 was far too cool to be relegated to the history books so he made his own. It’s not a direct copy – this one uses an Arduino for the brains, only breaking out some buttons, a pair of four-digit seven-segment displays, and the I2C and SPI pins on the ‘duino. The KIM-1 is emulated by the Arduino, allowing for the same interface as an original connected up to an old teletype, and [Oscar] got his hands on the original code for Microchess and the first 6502 disassembler from [Woz] and [Baum].

[Oscar] put the schematics for his version of the KIM-1 up, and has the PCBs up on SeeedStudio. If you’re looking for an awesome replica of a vintage computer and a nice weekend project, here ‘ya go.

CARDIAC Cardboard Computer

A Clever Cardboard Computer

Back in the 70’s when computers were fairly expensive and out of reach for most people, [David Hagelbarger] of Bell Laboratories designed CARDIAC: CARDboard Illustrative Aid to Computation. CARDIAC was designed as an educational tool to give people without access to computers the ability to learn how computers work.

The CARDIAC computer is a single-accumulator single-address machine, which means that instructions operate on the accumulator alone, or on the accumulator and a memory location. The machine implements 10 instructions, each of which is assigned a 3-digit decimal opcode. The instruction set architecture includes instructions common to simple Von Neumann processors, such as load, store, add/subtract, and conditional branch.

Operating the computer is fairly simple–the cardboard slides guide you through the operation of the ALU and instruction decoder, and the flow chart shows you which stage to go to next. The program counter is represented by a cardboard ladybug which is manually moved through the program memory after each instruction completes.

Even though the CARDIAC is dated and very simplistic, it is still a useful tool to teach how microprocessors work. Although modern processors include multi-stage pipelines, finely-tuned branch predictors, and numerous other improvements, the basic principles of operation remain the same.

Feeling adventurous? Print out your own CARDIAC clone and try writing your first cardboard computer program.

[via Reddit]

Low-Level Computing With Entry-Level Difficulty: DUO Light

The hardware can’t get much simpler. The DUO Light uses an ATmega328 (commonly found on Arduino boards) along with an external SRAM chip to provide a low-level computer programming experience that will suit those new to programming and some more experienced tinkerers.

At the time of writing the modest Kickstarter goal of $1100 was just $18 shy of success. We’d wager that this is partly due to the availability of so much support material on [Jack’s] website. (fyi- a lot of the links on that page are zip files)

The SD card slot accepts a FAT16 card with byte code for the programs. The available Psuedo C compiler, and assembler let you pick your poison, or you can simply dig into the byte code directly. We didn’t see a schematic, but the firmware and BOM are both available. You should be able to easily figure out connections from those.

We’ve been a fan of [Jack’s] work for quite some time. His TTL computer and 16-core ATmega-based offerings are sure to delight, even if you remember seeing them go by the first time. This isn’t his first stab at educational models either. Though we still found his logic chip computer a bit daunting.