Spinning Magnets Do Your Dice Rolling For You

Dice are about the simplest machines possible, and they’ve been used since before recorded history to generate random numbers. But no machine is so simple that a little needless complexity can’t make it better, as is the case with this mechanical spinning dice. Or die. Whatever.

Inspiration for the project came from [Attoparsec]’s long history with RPG and tabletop games, which depend on different kinds of dice to generate the randomness that keeps them going — that and the fortuitous find of a seven-segment flip-dot display, plus the need for something cool to show off at OpenSauce. The flip-dot is controlled by an array of neodymium magnets with the proper polarity to flip the segments to the desired number. The magnets are attached to an aluminum disk, with each array spread out far enough to prevent interference. [Attoparsec] also added a ring of magnets to act as detents that lock the disk into a specific digit after a spin.

The finished product ended up being satisfyingly clicky and suitably random, and made a good impression at OpenSauce. The video below documents the whole design and build process, and includes some design dead-ends that [Attoparsec] went down in pursuit of a multiple-digit display. We’d love to see him revisit some of these ideas, mechanically difficult though they may be. And while he’s at it, maybe he could spice up the rolls with a little radioactivity.

Continue reading “Spinning Magnets Do Your Dice Rolling For You”

Can AI Replace Your DM?

The current hotness is anything to do with artificial intelligence, and along with some interesting experiments comes a lot of mindless hype. The question is, what can it do for us! [Jesse] provides a fun answer by asking ChatGPT to perform as a Dungeons and Dragons dungeon master.

There are many ways to approach a game of D&D, and while some take the whole thing very seriously indeed we prefer to treat it as a lightly inebriated band of intrepid heroes smacking each other and assorted monsters with imaginary swords and war hammers. Would the AI follow the nerdiest cliches to their pedantic conclusions, or would it sense that the point of a game is to have fun?

Continue reading “Can AI Replace Your DM?”

A Dungeon Master With A Thermal Printer

The thermal printer is ubiquitous in today’s world, mostly found whenever we have to get a receipt from somewhere. They’re cheap, fast, and easy to use. Not only that, though, but as [Daniel] found out, they’re also pretty straightforward to re-program and use for other things than a three-foot-long receipt from a drug store. He’s adapted them to serve as a key tool of the dungeon master in his D&D games.

While he has adapted the most common thermal printer standard, the Epson Standard Code, the real fun of this project is in the user interface. He’s made it possible to build templates and other D&D-oriented sheets quickly via HTML, so the dungeon master can print out character sheets, items from the game, maps, or anything else they might possibly need at the time. It’s all highly configurable to whatever needs arise, and the interface works on Mac, Windows, and Linux.

All of the project code is located on Daniel’s GitHub page for anyone looking to try this out. Most thermal printers use this standard too, so cheap ones can easily be found and put to use as long as a roll of thermal paper is available. If the feel of thermal paper is bringing up some childhood nostalgia, it could be because you had the Game Boy Printer as a youth and are looking for ways to recapture that thermal printer magic.

Hackaday Prize 2022: Digital Dice Towers Built In Beautiful Retro Cases

Retro hardware often looks fantastic, but we may find we no longer need it for its original function. [John Anderson] found that to be the case with some old Heathkit gear, and set about giving them a fun overhaul.

With the help of AVR microcontrollers, the devices have been repurposed into electronic dice towers for playing Dungeons & Dragons. A seed is generated based on the chip’s uptime, and supplied to a pseudorandom number generator that emulates dice rolls. The devices can be configured to roll a variety of dice, including the usual 6, 8, 10, and 20-sided varieties. Plus, they can be set to roll multiple dice at a time — useful when you’re rolling complicated spells and attacks in combat.

[John] has converted a variety of Heathkit devices, from Morse code trainers to digital multi-meters. They provide their beautiful cases and a great retro aesthetic, and we think they’d make fitting table decoration for retro cyberpunk tabletop games, too.

Creating your own electronic dice is a great way to get familiar with programming microcontrollers. Video after the break.

Continue reading “Hackaday Prize 2022: Digital Dice Towers Built In Beautiful Retro Cases”

’75 Nixie Multimeter As Digital Dice

For the casual Monopoly or Risk player, using plain six-sided dice is probably fine. For other games you may need dice with much more than six sides, and if you really want to go overboard you can do what [John] did and build electronic dice with a random number generator if you really need to remove the pesky practice of rolling physical dice during your games of chance.

The “digital dice” he built are based on a multimeter from 1975 which has some hardware in it that was worth preserving, including a high quality set of nixie tubes. Nixies can be a little hard to come by these days, but are interesting pieces of hardware in their own right. [John] added some modern hardware to it as well, including an AVR microcontroller that handles the (pseudo) random number generation. A hardware switch tells the microcontroller how many sides the “die” to be emulated will need, and then a button generates the result of the roll.

This is a pretty great use for an old piece of hardware which would otherwise be obsolete by now. [John] considers this a “Resto-Mod” and the finish and quality of the build almost makes it look all original. It’s certainly a conversation piece at the D&D sessions he frequents.

Hacking Your Way To A Custom TV Boot Screen

More and more companies are offering ways for customers to personalize their products, realizing that the increase in production cost will be more than made up for by the additional sales you’ll net by offering a bespoke product. It’s great for us as consumers, but unfortunately we’ve still got a ways to go before this attitude permeates all corners of the industry.

[Keegan Ryan] recently purchased a TV and wanted to replace its stock boot screen logo with something of his own concoction, but sadly the set offered no official way to make this happen. So naturally he decided to crack the thing open and do it the hard way The resulting write-up is a fascinating step by step account of the trials and tribulations that ultimately got him his coveted custom boot screen, and just might be enough to get you to take a screw driver to your own flat panel at home.

The TV [Keegan] brought was from a brand called SCEPTRE, but as a security researcher for NCC Group he thought it would be a fun spin to change the boot splash to say SPECTRE in honor of the infamous x86 microarchitecture attack. Practically speaking it meant just changing around two letters, but [Keegan] would still need to figure out where the image is stored, how it’s stored, and write a modified version to the TV without letting the magic smoke escape. Luckily the TV wasn’t a “smart” model, so he figured there wouldn’t be much in the way of security to keep him from poking around.

He starts by taking the TV apart and studying the main PCB. After identifying the principle components, he deduces where the device’s firmware must be stored: an 8 MB SPI flash chip from Macronix. He connects a logic analyzer up to the chip, and sure enough sees that the first few kilobytes are being read on startup. Confident in his assessment, he uses his hot air rework station to lift the chip off the board so that he can dive into its contents.

With the help of the trusty Bus Pirate, [Keegan] is able to pull the chip’s contents and verify its integrity by reading a few human-readable strings from it. Using the binwalk tool he’s able to identify a JPEG image within the firmware file, and by feeding its offset to dd, pull it out so he can view it. As hoped, it’s the full screen SCEPTRE logo. A few minutes in GIMP, and he’s ready to merge the modified image with the firmware and write it back to the chip.

He boots the TV back up and finds…nothing changed. A check of the datasheet for the SPI flash chip shows there are some protection bits used to prevent modifying particular regions of the chip. So after some modifications to the Bus Pirate script and another write, he boots the TV and hopes for the best. Finally he sees the object of his affection pop up on the big screen, a subtle change that reminds him every time the TV starts about the power of reverse engineering.

Dungeons And Dragons TV Tabletop!

With little more than pen, paper, dice, and imagination, a group of friends can transport themselves to another plane for shenanigans involving dungeons and/or dragons. An avid fan of D&D and a budding woodworker, Imgurian [CapnJackHarkness] decided to build gaming table with an inlaid TV for their inaugural project.

The tabletop is a 4’x4′ sheet of plywood, reinforced from underneath and cut out to accommodate a support box for the TV. Each leg ended up being four pieces of 1’x4′ wood, laminated together with a channel cut into one for the table’s power cable. An outer ledge has dice trays — if they’re even needed in today’s world — ready for all those nat 20s, cupholders because nobody likes crying over spilled drinks, and electrical outlets to keep devices charged. Foam squares cover the tabletop which can be easily removed and washed if needed — but more on that in a second. [CapnJackHarkness] painted the table as the wood rebuffed many attempts at staining, but they’re happy with how it turned out.

Continue reading “Dungeons And Dragons TV Tabletop!”