Awning Motorized And Automated To Avoid Wind Damage

Awnings can be architecturally beautiful, and they provide lovely shelter from the sun and even a bit of rain. They don’t always like taking a pounding from high winds though. [Steve Carey] installed some nice awnings, but wanted to avoid any potential issues, so he built an automated system to extend and retract them for him. 

An ESP32 serves as the brains of the operation. It’s set up to open and close the blinds using a high-torque brushed motor run by a BTS7960 motor driver. The motor turns the awning’s rod via a hook, so it can be readily removed in the event [Steve] moves house. Reed switches are used as end stops to ensure the motor stops when the awning is fully open or closed. The ESP32 is hooked up to an accelerometer mounted on the awning. It’s set up to sum the accelerations detected in all three axes, and close the awning in the event conditions get too windy.

There’s a certain peace of mind that comes with having your awning hooked up with a preventative safety system. We don’t have a lot of awning posts on Hackaday, but we have seen a good number of automated blinds in the past. If you’ve been working on your own outdoor home automation gear, be sure to hit up the tipsline! Happy…awnings…ing? Anyway.

 

Much Better VGA From An ESP32

The ESP32 series from Espressif have been a successful line of products, offering a powerful microcontroller with on-chip wireless networking. There’s a snag though in their practice of calling all of them ESP32s despite wildly varying specifications and even different processor cores, such that it’s easy to lose track of exactly what the chip in front of you can do. [Bitluni] was faced with updating his VGA library to include a newer variant, and was pleasantly surprised to find that it includes a far more capable display peripheral which enables significantly higher resolutions than previously.

The part in question is the ESP32-S3, a version of the chip with the dual Extensa cores we’re familiar with from earlier versions, but the interesting addition of an LCD controller. His previous VGA on ESP32 used the I2S peripheral and sacrificed some of the available bits to create sync pulses, while this version is not only faster but also includes dedicated sync hardware. He can now do up to 16-bit colour in as much as 1024×768 resolution as can be seen in the video below the break, though this feat requires a slightly out of spec framerate that only works on some screens. It’s by no means perfect because the peripheral is intended for LCD rather than VGA use, but it’s pushing microcontroller VGA to new heights and we look forward to any other uses people will put it to.

We covered the original Bitluni ESP32 VGA library when it first appeared.

Continue reading “Much Better VGA From An ESP32”

An ESP In Your Mini TV

When miniature LCD TVs arrived on the market they were an object of desire, far from the reach of tech-obsessed youngsters. Now in the age of smartphones they’re a historical curiosity, but with the onward march of technology you can have one for not a lot. [Taylor Galbraith] shows us how, with an ESP32 and an LCD we rather like because of its CRT-like rounded corners.

What he’s created is essentially a small media player, but perhaps what makes it of further interest is its migration from a mess of wires on a breadboard to a rather nice PCB. He’s not released the board files at the time of writing, but since the software can all be found in the GitHub repository linked above, we live in hope. On it are not only the ESP and the screen, but also a battery management board, an audio amplifier, and a small speaker. For now it’s a bare board, but we hope he’ll complete it with a neatly designed case for either a pocket player or a retro-styled mini TV. Until then you can see his progress in the videos below the break.

If you’re after more ESP32 media player inspiration, this isn’t the first retro-themed media player we’ve brought you.

Continue reading “An ESP In Your Mini TV”

Ventbot fans with 3D printed brackets and control circuit board with ESP32 breakout and multicolored 3D printed cases

Ventbots Are Fans Of HVAC And Home Automation

[WJCarpenter] had a common HVAC problem; not all the rooms got to a comfortable temperature when the heater was working to warm up their home. As often happens with HVAC systems, the rooms farthest from the heat source and/or with less insulation needed a boost of heat in the winter and cooling in the summer too. While [WJCarpenter] is a self-reported software person, not a hardware person, you will enjoy going along on the journey to build some very capable vent boosters that require a mix of each.

Ventbot control circuit board with ESP32 breakout in a red 3D printed case

There’s a great build log on hackaday.io here, but for those who need more of a proper set of instructions, there’s a step-by-step guide that should allow even a beginner hardware hacker to complete the project over on Instructables. There you’ll find everything you need to build ESPHome controlled, 3D printed, PC fan powered vent boosters. While they can be integrated into Home Assistant, we were interested to learn that ESPHome allows these to run stand-alone too, each using its own temperature and pressure sensor.

The many iterations of hardware and software show, resulting in thoughtful touches like a startup sequence that checks for several compatible temperature sensors and a board layout that accommodates different capacitor lead spacings. Along the way, [WJCarpenter] also graphed the noise level of different fans running at multiple speeds and the pressure sensor readings against the temperatures to see if they could be used as more reliable triggers for the fans. (spoiler, they weren’t) There are a bunch of other tips to find along the way, so we highly recommend going through all that [WJCarpenter] has shared if you want to build your own or just want some tips on how to convert a one-off project to something that a wider audience can adapt to their own needs.

Ventbot graphing of temperature, pressure, and fan noise

See a video after the break that doesn’t show the whole project but includes footage of the start-up sequence that tests each fan’s tachometer and the customizable ramp-up and ramp-down settings. Continue reading “Ventbots Are Fans Of HVAC And Home Automation”

Bringing Back The Minitel

If you didn’t live in France in the 80s or 90s, it’s likely you missed out on one of the most successful computer networks in existence prior to the modern Internet. Known as Minitel, it was an online service available over existing phone lines that offered a connected computer terminal for users to do most things we associate with the modern world, such as booking travel, viewing news, looking up phone numbers, and plenty of other useful activities. While a lot of the original system was never archived, there are still some efforts to restore some of its original functionality like this MiniMit.

The build requires either an original or a recreation of a Minitel terminal in all its 80s glory, but pairs an ESP32 to support modern network connectivity. The ESP32 interfaces with the Minitel’s DIN socket and provides it with a translation layer between WiFi and the networking type that it would have originally expected to see from the telephone lines. Two of the original developers of Minitel are working on restoring some of the services that would have been available originally as well, which means that the entire system is being redeveloped and not just the original hardware.

We’ve mentioned that this system was first implemented in the 80s, but the surprising thing is that even well after broadband Internet would have been available to most people in France, the Minitel system still had widespread use, not being fully deactivated until 2012. They remain popular as inspiration for other projects as well, like this one which was brought a little more up-to-date with the help of a modern display and Raspberry Pi.

Modern Brownie Camera Talks SD And WiFi

If you’re at all into nostalgic cameras, you’ve certainly seen the old Brownie from Kodak. They were everywhere, and feature an iconic look. [JGJMatt] couldn’t help but notice that you could easily find old ones at a good price, but finding and developing No. 117 film these days can be challenging. But thanks to a little 3D printing, you can install an ESP32 camera inside and wind up with a modern but retro-stylish camera. The new old camera will work with a memory card or send data over WiFi.

The Brownie dates back to 1900 and cost, initially, one dollar. Of course, a dollar back then is worth about $35 now, but still not astronomical. After cleaning up and tuning up an old specimen, it was time to fire up the 3D printer.

There are also mods to the camera to let it accept an M12 lens. There are many lenses of that size you can choose from. There are a few other gotchas, like extending the camera cable, but it looks like you could readily reproduce this project if you wanted one of your very own.

We’ve seen old cameras converted before. Or, you can just start from scratch.

Hackaday Prize 2023: Bluetooth Spell To Speak

Have you ever known what you wanted to say but couldn’t figure out exactly how to say it? For some individuals, that’s all the time. The gap between intention and action can be a massive chasm. [Pedro Martin] is trying to help bridge that gap with a Bluetooth RPM letterboard.

[Soma Mukhopadhyay] developed Rapid Prompting Method (RPM) for teachers to work with students with autism. Gentle physical cues can help individuals complete motor movements, which can be used as a communication mechanism by pointing to a letterboard. Students can eventually move onto an tablet, but some students see the light as sensory noise or might associate it with playtime.

[Pedro] hopes that his letterboard will be able to provide tactile feedback for each letter to strengthen the connection the teacher is trying to establish. The letter board is a 22 by 14 grid (308 total) of touch electrodes connected to three MPR121 12-channel capacitive touch sensors connected to an ESP32 via I2C. Additionally, 60 LEDS controlled by two shift registers are interspaced between the touch electrodes. As only one LED will be on at a given time, [Pedro] can use the shift registers in a row/column setup since the current draw should be small. A piezo buzzer serves as additional feedback for the student. The ESP32 emulates a Bluetooth keyboard, so the teacher doesn’t have to keep track of what the student is spelling and can focus on RPM.

[Pedro] encountered the usual slew of debugging problems, such as ground bouncing, captive noise, and Bluetooth wonkiness. The code, KiCad, and STL files are on the Hackaday.io project page. If you want more accessibility-focused keyboards, look at the RP2040-based Intellikeys we saw recently.

Continue reading “Hackaday Prize 2023: Bluetooth Spell To Speak”