Son Of Rothult

We are continuously inspired by our readers which is why we share what we love, and that inspiration flows both ways. [jetpilot305] connected a Rothult unit to the Arduino IDE in response to Ripping up a Rothult. Consider us flattered. There are several factors at play here. One, the Arduino banner covers a lot of programmable hardware, and it is a powerful tool in a hardware hacker’s belt. Two, someone saw a tool they wanted to control and made it happen. Three, it’s a piece of (minimal) security hardware, but who knows where that can scale. The secure is made accessible.

The Github upload instructions are illustrated, and you know we appreciate documentation. There are a couple of tables for the controller pins and header for your convenience. You will be compiling your sketch in Arduino’s IDE, but uploading through ST-Link across some wires you will have to solder. We are in advanced territory now, but keep this inspiration train going and drop us a tip to share something you make with this miniature deadbolt.

Locks and security are our bread and butter, so enjoy some physical key appreciation and digital lock love.

Microphone Isolation Shield Is A Great IKEA Hack; Definitely Not A Xenomorph Egg

As any content creator knows, good audio is the key to maintaining an audience. Having a high quality microphone is a start, but it’s also necessary to reduce echoes and other unwanted noise. An isolation shield is key here, and [phico] has the low down on making your own.

The build starts with an IKEA lampshade, so it’s a great excuse to head down to the flatpack store and grab yourself some Köttbullar for lunch while you’re at it (that’s meatballs for those less versed in IKEA’s cafeteria fare). This is really more of a powder-coated steel frame than a shade, perfect as the bones of an enclosure. [Phico] hacks it open with a Dremel to make room for the microphone. Cardboard soaked in wallpaper paste is then used to create a papier-mache-like shell, which is then stuffed with acoustic foam. A small opening is left to allow the narrator’s voice to reach the microphone, while blocking sound from other directions. Finally, a stocking is wrapped around the whole assembly to act as an integral anti-pop filter.

It’s a tidy build, and while it looks a bit like a boulder to some, if you encounter a room full of ovomorphs that look just like this, tiptoe right out of there. IKEA hacks are always popular, and this laser projector lamp is a great example. If you’ve got your own nifty Swedish-inspired build, make sure you let us know!

Tearing Down IKEA’S Sonos Speaker

There’s little better way to learn about a piece of electronics than by tearing it down. Taking a peek under the hood can reveal all manner of things about a device’s design, manufacturing, and origins. [This Does Not Compute] does a great job of doing just that, digging into the guts of IKEA’s Symfonisk speaker.

Symfonisk is a WiFi-enabled speaker, working with the Sonos ecosystem. Tearing down the device reveals some similarities to IKEA’s earlier Eneby speaker, with both devices sharing similar speaker drivers, apparently sourced from GGEC. However, upon digging deeper, it’s revealed that the Symfonisk has more in common with a speaker from another manufacturer entirely.

The video does a great job of not only investigating the manufacturing origins of the device, but breaking down the way it all works. This shows how the speaker relies on an Atheros WiFi-only chipset, thus explaining the lack of Bluetooth functionality, as well as discussing things like the neat solutions for cable management. Interestingly, the speaker uses a two-channel DAC and Class-D amplifier, but only operates in mono. Instead, the two channels are instead used to separately drive the tweeter and woofer, allowing EQ to be done in software on the main CPU, negating the need for analog crossover electronics.

It’s a teardown that would serve as a great primer for anyone considering building a piece of consumer electronics, but particularly those involved in the hi-fi space. To see how it was done way back when, perhaps try this 8-track teardown instead. Video after the break.

Continue reading “Tearing Down IKEA’S Sonos Speaker”

Hacking The IKEA TRÅDFRI LED Power Supply

Just because something is being actively documented and tampered with by enthusiastic hackers doesn’t mean the information is handily centralized. There can be a lot of value in gathering disparate resources in one place, and that’s exactly what [Trammell Hudson] has done with his resource page for hacking the IKEA TRÅDFRI LED power supply with wireless interface. Schematic teardown, custom firmware images, it’s all there in one convenient spot.

Back in 2017, the IKEA TRÅDFRI hacking scene was centered around the LED light bulbs but as the group of products expanded, the rest of the offerings have also gotten some attention.

Why bother tampering with these units? One reason is to add features, but another is to make them communicate over your own MQTT network. And MQTT is the reason you are only a Raspberry Pi and a trip to IKEA away from the beginnings of a smart home that is under no one’s control or influence but your own.

ESP8266 Upgrade Gives IKEA LEDs UDP Superpowers

It can be difficult to resist the impulse buy. You see something interesting, the price is right, and even though you know you should do your research first, you end up putting it in your cart anyway. That’s how [Tobias Girstmair] ended up being the not-so proud owner of a LEDBERG RGB LED strip from IKEA, and what eventually pushed him to replace wimpy original controller with an ESP8266.

So what was the problem with the original controller? If you can believe it, it was incapable of producing white light. When IKEA says an LED is multi-color, they apparently mean it’s only multi-color. A quick check of the reviews online seem to indicate that the white version is sold as a different SKU that apparently looks the same externally and has confused more than a few purchasers.

Rather than having to pick one or the other, [Tobias] decided he would replace the original controller with an ESP-03, hoping that would give him granular enough control over the LEDs to coax a suitably white light out of them. He didn’t want to completely start from scratch, so one of the first decisions he made was to reuse the existing PCB and MOSFETs. Some handy test points on the PCB allowed him to hook the digital pins of the ESP right to the red, blue, and green LED channels.

Then it was just a matter of coming up with the software. To keep things simple, [Tobias] decided to create a “dumb” controller that simply sets the LED color and intensity according to commands it receives over a simplified UDP protocol. Anything beyond that, such as randomized colors or special effects, is done with scripts that run on his computer and fire off the appropriate UDP commands. This also means he can manually control his newly upgraded LEDBERG strips from basically anything that can generate UDP packets, such as an application on his Android phone.

It might not be the most robust implementation we’ve ever seen, but all things considered, it looks as though this modification could be a pretty good way to get some cheap network controlled RGB lighting in your life.

Nvidia Teaching Robots To Master IKEA Kitchens

The current wave of excitement around machine learning kicked off when graphics processors were repurposed to make training deep neural networks practical. Nvidia found themselves the engine of a new revolution and seized their opportunity to help push frontiers of research. Their research lab in Seattle will focus on one such field: making robots smart enough to work alongside humans in an IKEA kitchen.

Today’s robots are mostly industrial machines that require workspaces designed for robots. They run day and night, performing repetitive tasks, usually inside cages to keep squishy humans out of harm’s way. Robots will need to be a lot smarter about their surroundings before we could safely dismantle those cages. While there are some industrial robots making a start in this arena, they have a hard time justifying their price premium. (Example: financial difficulty of Rethink Robotics, who made the Baxter and Sawyer robots.)

So there’s a lot of room for improvement in this field, and this evolution will need a training environment offering tasks of varying difficulty levels for robots. Anywhere from the rigorous structured environment where robots work well today, to a dynamic unstructured environment where robots are hopelessly lost. Lab lead Dr. Dieter Fox explained how a kitchen is ideal. A meticulously cleaned and organized kitchen is very similar to an industrial setting. From there, we can gradually make a kitchen more challenging for a robot. For example: today’s robots can easily pick up a can with its rigid regular shape, but what about a half-full bag of flour? And from there, learn to pick up a piece of fresh fruit without bruising it. These tasks share challenges with many other tasks outside of a kitchen.

This isn’t about building a must-have home cooking robot, it’s about working through the range of challenges shared with common kitchen tasks. The lab has a lot of neat hardware, but its success will be measured by the software, and like all research, published results should be reproducible by other labs. You don’t have a high-end robotics lab in your house, but you do have a kitchen. That’s why it’s not just any kitchen, but an IKEA kitchen, to take advantage of the fact they are standardized, affordable, and available around the world for other robot researchers to benchmark against.

Most of us can experiment in a kitchen, IKEA or not. We have access to all the other tools we need: affordable AI hardware from Google, from Beaglebone, and from Nvidia. And we certainly have no shortage of robot arms and manipulators on these pages, ranging from a small laser-cut MeArm to our 2018 Hackaday Prize winner Dexter.

Hackaday Podcast 018: Faxploitation! Ikea RFID Hacking, Space Ads, Hydrogen Dones, And Blinkies

Hackaday Editors Elliot Williams and Mike Szczys gather round the microphone to spin tales from a week of hacks. All the rage are fax-machine-based malware, a hydrogen fuel cell drone, and bringing color to the monochrome world of the original Super Mario Land. There are at least three really cool LED hacks this week, plus Tom’s been exploring space advertising, Maya’s debunking solder myths, and Elliot goes ga-ga for a deep Ikea electronics hack. Closing out the show is an interview with Bart Dring about his exquisitely-engineered string art robot.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 018: Faxploitation! Ikea RFID Hacking, Space Ads, Hydrogen Dones, And Blinkies”