From Shop Floor Dust To Carbon Steel

[Chandler Dickinson] did his monthly sweep of the floor in his blacksmith’s shop when it occurred to him that all that metal dust had to go somewhere, didn’t it? So he did the only reasonable thing and made a crude foundry out of cinder blocks, melted his dirt in it, and examined what came out the other end.

His first step was to “pan” for steel. He rinsed all the dirt in a bucket of water and then ran a magnet at the bottom of the bucket. The material that stuck to the magnet, was ripe for reclaimation.

Next he spent a few hours charging a cinderblock foundry with coal and his iron dust. The cinderblocks cracked from the heat, but at the end he had a few very ugly brittle rocks that stuck to a magnet.

Of course there’s a solution to this non-homogenous steel. As every culture with crappy steel eventually discovered, you can get really good steel if you just fold it over and over again.  So he spend some time hammering one of his ugly rocks and folding it a bit. He didn’t get to two hundred folds, but it was enough to show that the resulting slag was indeed usable iron.

He did a deeper examination of the steel last week, going as far as to etch it, after discovering that the metal sparked completely differently when sanded on one side versus the other. It definitely needed work, but all seemed to have worked in the end.

Continue reading “From Shop Floor Dust To Carbon Steel”

Hackaday Links: July 31, 2016

Going to DEF CON this week? Getting into Vegas early? We’re having a meetup on Wednesday, in the middle of the day, in the desert. It’s all going down at the grave of James T. Kirk. Rumor has it, the Metrons will abduct a few of us and make us fight to the death on a planet with impossible geology.

The Hara Arena is closing down. The Hara Arena in Dayton, Ohio is the home of Hamvention, the largest gathering of amateur radio enthusiasts in the US. I was there last May, and I can assure you, the Hara Arena has fallen into a state of disrepair. The ARRL reports hamvention will be at a new venue next year. The last scheduled event, after which there will be an auction for venue equipment and furniture, will be on August 27th. It’ll be a comic book and toy show.

Hackaday.io has a log of projects. Some might say it has too many projects. The search is great, but sometimes you just want to look at a random project. That’s the problem [Greg] solved with his Hackaday.io randomizer. It returns a random Hackaday.io project, allowing you to gawk at all the boards and resistors found within.

Primitive Technology is a YouTube channel you should watch. It’s a guy (who doesn’t talk), building everything starting with pre-stone age technology. He built a house with a heated floor, somewhat decent pottery, and this week he entered the iron age. The latest video shows him building a squirrel cage fan out of clay and bark to smelt iron. The ore was actually iron-bearing bacteria, mixed with charcoal and wood ash, and placed into a crude but accurate smelting furnace. The end result is a few bb-sized grains of iron and a lot of melted flux. That’s not much, and is certainly not an accurate portrayal of what was being done 5,000 years ago, but it does mean the Internet’s favorite guy in the woods has entered the iron age while completely skipping over bronze.

Freeside Atlanta says they’re the largest hackerspace on the east coast, and to show off all the cool goings on, they made a walk through video.

Hackaday has a retro edition. It’s a wide selection of Hackaday posts presented in a format without JavaScript, CSS, ads, or any other Web 2.0 cruft. There’s an open challenge for anyone to load the retro site with a 4004 CPU. I know it can be done, but no one has presented evidence of doing it. [Lukas] just sent in his retro submission with a Z80 single board computer displaying some of the page on seven-segment displays. It’s basically a terminal emulator connected to a laptop that does most of the work, but this is the most minimal retro submission we’ve ever received.

A quick brush over the part with some sand paper and it quickly transforms from obviously plastic to metallic.

Learn Resin Casting Techniques: Cold Casting

Sometimes we need the look, feel, and weight of a metal part in a project, but not the metal itself. Maybe you’re going for that retro look. Maybe you’re restoring an old radio and you have one brass piece but not another. It’s possible to get a very metal like part without all of the expense and heat required in casting or the long hours in the metal fabrication shop.

Before investing in the materials for cold casting, it’s best to have practical expectations. A cold cast part will not take a high polish very well, but for brushed and satin it can be nearly indistinguishable from a cast part. The cold cast part will have a metal weight to it, but it clinks like ceramic. It will feel cool and transfers heat fairly well, but I don’t have numbers for you. Parts made with brass, copper, and iron dust will patina accordingly. If you want them to hold a bright shine they will need to be treated with shellac or an equivalent coating afterward; luckily the thermoset resins are usually pretty inert so any coating used on metal for the same purpose will do.

It is best to think of the material as behaving more or less like a glass filled nylon such as the kind used for the casing of a power tool. It will be stiff. It will flex a relatively short distance before crazing and then cracking at the stress points. It will be significantly stronger than a 3D printed part, weaker than a pure resin part, and depending on the metal; weaker than the metal it is meant to imitate.

Continue reading “Learn Resin Casting Techniques: Cold Casting”

Are Powdered Metal Fuels Just A Flash In The Pan?

It’s no secret that fossil fuels are quickly becoming extinct. As technology charges ever forward, they are disappearing faster and faster. Many of our current dependencies on fossil fuels are associated with high-energy applications like transportation. Since it’s unlikely that global transportation will ever be in decline for any reason other than fuel shortage itself, it’s imperative that we find something that can replicate the high energy density of fossil fuels. Either that, or go back to the drawing board and change the entire scope of global transportation.

Energy, especially solar and wind, cannot be created all over the world. Traditionally, energy is created in situ and shipped to other places that need it. The proposed solutions for zero-carbon energy carriers—batteries and hydrogen—all have their weaknesses. Batteries are a fairly safe option, but their energy density is pretty poor. Hydrogen’s energy density is higher, but its flammability makes it dangerously volatile to store and transport.

Recently, a group of researchers at McGill University in Canada released a paper exploring the use of metal powders as our zero-carbon fuel of the future. Although metal powders could potentially be used as primary energy sources, the transitory solution they propose is to use them as secondary sources powered by wind and solar primaries.

Continue reading “Are Powdered Metal Fuels Just A Flash In The Pan?”

Back To Basics: What’s The Deal With Magnets?

I consider myself a fairly sharp guy. I’ve made a living off of being a scientist for over 20 years now, and I have at least a passing knowledge of most scientific fields outside my area. But I feel like I should be able to do something other than babble incoherently when asked about magnets. They baffle me – there, I said it. So what do I do about it? Write a Hackaday post, naturally – chances are I’m not the only one with cryptomagnetonescience, even if I just made that term up. Maybe if we walk through the basics together, it’ll do us both some good understanding this fundamental and mysterious force of nature.

Continue reading “Back To Basics: What’s The Deal With Magnets?”

A DIY Mobile Soldering Iron

Cordless soldering irons are, as a rule, terrible. A few months ago, you could pick up a cordless soldering iron from Radio Shack that was powered by AAA batteries. You can guess how well those worked. There are butane-fueled soldering irons out there that will heat up, but then you’re left without the requisite degree of temperature control.

[Xavier] didn’t want to compromise on a mobile soldering iron, so he made a desktop version portable. His mobile temperature controlled soldering iron uses the same electronics that are found in inexpensive Hakko clones, and is powered by a LiPo battery.

The soldering station controller comes directly from eBay, and a DC/DC boost converter accepts just about any DC power supply – including an XT60 connector for LiPo cells. A standard Hakko 907 iron plugs into the front, and a laser cut MDF enclosure makes everything look great. There were a few modifications to the soldering station controller that involved moving the buttons and temperature display, but this build really is as simple as wiring a few modules together.

With an off-the-shelf LiPo battery, the iron heats up fast, and it doesn’t have a long extension cord to trip over. With the right adapter, [Xavier] can use this soldering station directly from a car’s cigarette power port, a great feature that will be welcomed by anyone who has ever worked on the wiring in a car.

Continue reading “A DIY Mobile Soldering Iron”

Retrotechtacular: Häfla Hammerforge Healed

Visit any renaissance fair across the United States this fall and you’ll undoubtedly find a blacksmith. He’ll be sweating away in a tent, pounding on a piece of glowing steel set against an anvil. While the practice of the single blacksmith endures today, high-production ‘works of days past required increasing amounts of muscle. The more tireless the muscle, the better. The manual efforts of the blacksmith were replaced by huge hammers, and the blacksmith needed only to turn the piece between impressions and maintain a healthy respect for the awesome crushing power of the machine.

Last week, blacksmith enthusiasts completed restoration work on the Häfla hammer in Finspang, Sweden. The 333 year old hydraulic hammer hadn’t been used since 1924, when operations ceased at the Häfla Hammerforge. The ‘works was built in 1682 and used the German method of forging, which had been introduced to Sweden in the 1500s. Steel production was revolutionized in the 1800s by the Bessemer process, which resulted in a much stronger product. Continue reading “Retrotechtacular: Häfla Hammerforge Healed”