Watch The Low-Cost Mechatronics Lab Dispense Candy, Sort Cups

A lot can be done with simple motors and linear motion when they are mated to the right mechanical design and control systems. Teaching these principles is the goal behind the LCMT (Low Cost Mechatronics Trainer) which is intended primarily as an educational tool. The LCMT takes a “learn by doing” approach to teach a variety of principles by creating a system that takes a cup from a hopper, fills it with candy from a dispenser, then sorts the cups based on color, all done by using the proper combinations of relatively simple systems.

The Low Cost Mechatronics Trainer can be built for under $1,000 and is the wonderful work of a team from the Anne Arundel Community College in Maryland, USA. The LCMT is clearly no one-off project; there are complete CAD files and build documentation on the site, as well as a complete lab guide for educators.

A demo video of the assembled system is embedded below, with a walkthrough done by [Tim Callinan]. It’s worth a watch to see how cleanly designed the system is, and the visual learners among you may learn a thing or two just by watching the system go through its motions.

Continue reading “Watch The Low-Cost Mechatronics Lab Dispense Candy, Sort Cups”

Mechatronic Hand Mimics Human Anatomy to Achieve Dexterity

Behold the wondrous complexity of the human hand. Twenty-seven bones working in concert with muscles, tendons, and ligaments extending up the forearm to produce a range of motions that gave us everything from stone tools to symphonies. Our hands are what we use to interface with the physical world on a fine level, and it’s understandable that we’d want mechanical versions of ourselves to include hands that were similarly dexterous.

That’s a tall order to fill, but this biomimetic mechatronic hand is a pretty impressive step in that direction. It’s [Will Cogley]’s third-year university design project, which he summarizes in the first video below. There are two parts to this project; the mechanical hand itself and the motion-capture glove to control it, both of which we find equally fascinating. The control glove is covered with 3D-printed sensors for each joint in the hand. He uses SMD potentiometers to measure joint angles, with some difficulty due to breakage of the solder joints; perhaps he could solve that with finer wires and better strain relief.

The hand that the glove controls is a marvel of design, like something on the end of a Hollywood android’s arm. Each finger joint is operated by a servo in the forearm pulling on cables; the joints are returned to the neutral position by springs. The hand is capable of multiple grip styles and responds fairly well to the control glove inputs, although there is some jitter in the sensors for some joints.

The second video below gives a much more detailed overview of the project and shows how [Will]’s design has evolved and where it’s going. Anthropomorphic hands are far from rare projects hereabouts, but we’d say this one has a lot going for it.

Continue reading “Mechatronic Hand Mimics Human Anatomy to Achieve Dexterity”

Anti-Entropy Machine Satiates M&M OCD

College engineering projects are great, because they afford budding engineers the opportunity to build interesting things without the need for financial motivation. Usually, some basic requirements are established, but students are free to get creative and build something that appeals to them personally. For our readers, mechatronics courses are ripe for these kinds of projects, as the field combines electrical engineering, mechanical engineering, and programming.

[Ethan Crane] is in just such a course, and had a final project due with only one real requirement: it had to use a PICAXE. Obviously, this gave [Ethan] quite a bit of freedom to build something unique, and what he came up with is an “Anti-Entropy Machine” designed to sort M&M candies by color. The electronics are as simple as [Ethan] could make them (a good philosophy for an engineering student to adhere to). There is an IR sensor to determine if a candy is in the hopper, an RGB sensor to determine its color, and servos to position the delivery chute based on color and operate the hopper.

Continue reading “Anti-Entropy Machine Satiates M&M OCD”

Hackaday Prize Entry: Raimi’s Bionic Arm

Sometimes, the most amazing teams make the most wonderful things happen, and yet, there is just not enough time to finish all the features before the product ships. This is what happened to Raimi, who came to this world missing a right hand and half of her right forearm. Raimi is now 9 years old, and commercial mechatronic prostheses are still only available to those who can afford them. When Raimi’s father approached [Patrick Joyce] to ask him for help in building an affordable prosthesis, he knew it would matter, and went right to work.

Continue reading “Hackaday Prize Entry: Raimi’s Bionic Arm”

Automated drum


A team of three PhD students constructed this ‘multi-mallet automatic drumming instrument (Madi)‘. Their Expressive Machines Musical Instruments site is dedicated to building instruments like this and they recently showed their work at the first annual Guthman Musical Instrument Competition. A ‘low-stakes X Prize’ for musical instruments. 25 applicants were chosen to show their unique musical instruments for $10K in prizes. We like the team’s Madi because it’s adapting a traditional instrument and then pushing it to the limit. It reminds us of the Crazy J mechatronic guitar from 2005. You can see a video of the Madi playing below.

Continue reading “Automated drum”