Laser Projector Ditches Galvanometer For Spinning Drum

Laser projectors like those popular in clubs or laser shows often use mirror galvanometers to reflect the laser and draw in 2D. Without galvos, and on a tight budget, [Vitaliy Mosesov] decided that instead of downgrading the quality, he would seek an entirely different solution: a spinning mirror drum.

He fires a laser at a rotating drum with twelve mirror faces, each at a different adjustable vertical angle. The laser will hit a higher or lower point on the projection surface depending on which mirror it’s reflecting off – this creates resolution in the Y direction.

Timing the pulsing of the laser so that it reflects off the mirror at a certain horizontal angle provides the X resolution.

As you can already tell, speed and timing is critical for this to work. So much so that [Vitaliy] decided he wanted to overclock his Arduino – from 16 MHz to 24.576 MHz. Since this changes the baud rate, an AVR ISP II was used for programming after the modification, and the ‘duino’s hardware serial initialization had to be hacked too.

For the laser itself, [Vitaliy] designed some nifty driver circuitry, which can respond quickly to the required >50 kHz modulation, supply high current, and filter out voltage transients on the power supply (semiconductor lasers have no protection from current spikes).

On the motor side of things, closed loop control is essential. A photo-interrupter was added to the drum for exact speed detection, as well as a differentiator to clean up the signal. Oh, and did we mention the motor is from a floppy disk drive?

We’ve actually seen builds like this before, including a dot-matrix version with multiple lasers and one made apparently out of Meccano and hot-glue that can project a Jolly Wrencher. But this build, with its multiple, adjustable mirrors, is a beauty.  Check it out in action below.

Continue reading “Laser Projector Ditches Galvanometer For Spinning Drum”

This Vapour Deposition Chamber Isn’t Vapourware

If you are an astronomer with an optical reflecting telescope, the quality of your mirror is one of your most significant concerns. Large observatories will therefore often have on-site vapour deposition plants to revitalise their reflectors by depositing a fresh layer of aluminium upon them. You might think that such a device would be the preserve only of such well-funded sites, but perhaps [Michael Koch]’s work will prove you wrong. He’s created his own vapour deposition system (Google Translate link of the German original) from scratch, and while it might be smaller than the institutional equivalents it is no less effective in its task.

At the heart of it is a stainless steel vacuum vessel with a two stage vacuum pump system to evacuate it. The mirror to be silvered is suspended in the vessel, and a piece of aluminium is suspended over a coil of tungsten wire that his electrically heated to melt it. The molten aluminium is described as “wetting” the tungsten wire in the same manner as we’ll be used to solder working on copper, but in the vacuum it vaporizes and deposits itself upon the mirror. Such a simple description glosses over the impressive work that went into it.

This is a long-running project that isn’t entirely new, but very much worth a look if only for its introduction to this fascinating field. If you are new to vacuum work, how about looking at a Superconference presentation introducing vacuum technology?

Thanks [Paul Bauer] for the tip.

Clever Approach To Stylus Alignment

Digitally stored music is just data. But not long ago, music was analog and required machines with moving parts. If you have never owned a record player, you at least know what they look like, now that there’s a(nother) vinyl revival. What you may not be aware of is that the player’s stylus needs to be aligned. It makes sense, that hypersensitive needle can’t be expected to perform well if it’s tearing across a record like a drift racer.

There are professional tools for ensuring alignment, but it’s not something you’ll need each day. [Ali Naci Erdem] shows us his trick for combining a printable template with a mirror to get the same results without the professional tool costs. Instead of ordinary printer paper, he prints the template on a piece of clear plastic and lays it across a small mirror. These are both items which can be picked up at a hobby store, which is not something we can say about a record player mirror protractor.

We love music hacks like this informative introduction to circuit bending, the wonderful [Martin] from Wintergatan, or if you want to get weird, an organ made from Furbies.

Flowing Light Art Inspired By Plankton

With today’s technology, art can be taken in directions that have never before been possible. Taking advantage of this, [teamlab] — an art collective from Japan — have unveiled an art installation that integrates the attendee into the spectacle. In the dark room of the piece ‘Moving Creates Vortices and Vortices Create Movement,‘ you are the brush that paints the flowing display.

Inspired by the movement of ocean plankton, this borrows your movement to create tapestries of light with mirrored walls to aggrandize the effect. As attendees walk about the room, their movements are tracked and translated into flowing patterns projected onto the ground. The faster the people move, the greater the resultant flow. Even those who have stopped to take in the scene are themselves still part of it; their idle forms mimic boulders in a river — as eddies would churn about the obstacle, so too does the light flow around the attendee.

Continue reading “Flowing Light Art Inspired By Plankton”

Poor Man’s Laser Scanner Probably Won’t Shoot Your Eye Out, Kid

Yes, laser cutters that come off the slow boat from China are more affordable than ever, and with some tweaks and hacks they can turn out some decent results. But if you just want a laser lightshow that’ll draw boxes on your living room ceiling, this simple X-Y laser scanner might be a good platform to build.

Let’s say right up front that there are more than a few safety issues with [ThingEngineer]’s 3D-printed two-axis scanner. He’s well aware of these potential retina-cooking issues and duly notes that a good pair of laser safety goggles is a must and that the cheap anti-lawsuit glasses that laser module manufacturers often include with their products don’t count.

[Editor’s Note: Glasses are really only intended for alignment operations. Pros enclose lasers beyond a certain power to prevent anyone going blind. Know where your beam terminates, kids.]

With that in mind, there’s a lot to be said for this poor man’s scanner build. Yes, it would be faster with real galvos and low-mass mirrors, but time is money, and the steppers and craft store mirror discs do the job, albeit slowly. We like that everything is so simple, even the method for turning a regular mirror into a front-surface mirror.

[ThingEngineer] proves you don’t need galvanometers to have some simple laser fun. And if steppers don’t do it for you, you can try little brushed DC hobby motors or even 3D-printed cams.

Continue reading “Poor Man’s Laser Scanner Probably Won’t Shoot Your Eye Out, Kid”

A Giant Magellan Telescope Needs Giant Mirrors

The Giant Magellan Telescope doesn’t seem so giant in the renderings, until you see how the mirrors are made.

The telescope will require seven total mirrors each 27 feet (8.4 meters) in diameter for a total combined diameter of 24.5 meters. Half of an Olympic size pool’s length. A little over four times the diameter of the James Webb Space Telescope.

According to the website, the mirrors are cast at the University of Arizona mirror lab and take four years each to make. They’re made from blocks of Japanese glass laid out in a giant oven. The whole process of casting the glass takes a year, from laying it out to the months of cooling, it’s a painstaking process.

Once the cooling is done there’s another three years of polishing to get the mirror just right. If you’ve ever had to set up a metal block for precision machining on a mill, you might have an idea of why this takes so long. Especially if you make that block a few tons of glass and the surface has to be ground to micron tolerances. A lot of clever engineering went into this, including, no joke, a custom grinding tool full of silly putty. Though, at its core it’s not much different from smaller lens making processes.

The telescope is expected to be finished in 2024, for more information on the mirror process there’s a nice article here.

Star Wars Speeder’s Finishing Touch: Mirrors

[Super 73] make electric scooters, and they made some Star Wars Speeder Bikes with a twist for Halloween; adding some mirrored panels around the bottoms of the bikes made for a decent visual effect that requires no upkeep or fancy workings. Having amazed everyone with the bikes, they followed them up with a video of the build process.

The speeders are shells built around their Super 73 electric scooter, with bases of what looks like MDF sitting on anchor points. Onto the base platforms goes cardboard and expanding foam to create the correct shapes, which are then sanded then coated in fiberglass and bondo. Then it’s time for paint, weathering, and all the assorted bits and pieces needed to make the speeders as screen-accurate as possible. The real finishing touch are the mirrored panels to conceal the wheels and create a levitation illusion. As long as the mirrors are angled so that they reflect the pavement when viewed by a pedestrian, it works fairly well.

Top it off with costumes and a ride around town (with plenty of cameras of course, they naturally wanted to grab some eyeballs) and we have to say, the end result looks nifty. Both the showcase and making-of videos are embedded below.

Continue reading “Star Wars Speeder’s Finishing Touch: Mirrors”