Turning A Lada Into An EV With 50 Cordless Drills, Because Why Not?

[Garage 54] is no stranger to vehicle-related projects of the “because why not?” variety, and their latest is using 50 cordless drills combined into a monstrous mega-motor to turn a gutted (and extended) Lada into an electric vehicle (EV).

Doing this leans on some of [Garage 54]’s earlier projects, such as replacing the aforementioned Lada’s engine block with a frame containing sixteen chainsaws. That means they don’t need to start completely from scratch, and have a frame design that can drop into the vehicle once the “engine” is constructed.

Fifty cordless drills won’t set any efficiency records for EV engines, but it’s got a certain style.

Here’s what’s in the new engine: each of the drills has its chuck replaced with an aluminum pulley, and belts connect each group of drills to an output shaft. Ideally, every drill motor would run at the same time and at exactly the same speed, but one works with what they have. [Garage 54] originally worked to synchronize the drills by interfacing to each drill’s motor control board, but eventually opted to simply bypass all controls and power each drill’s motor directly from the batteries. Initial tests are done by touching bare cable ends with a turned-away face and squinted eyes, but we expect “Just A Big Switch” to end up in the final assembly.

It looks wild and we can think of more than a few inefficiencies present in a system like this, but the output shaft does turn and torque is being transferred, so the next step is interfacing to the car’s factory gearbox.

If it powers the car in any meaningful way, that Lada might very well become the world’s most gloriously hacked-together EV. And hey, if the power output of the EV motor is disappointing, you can just make your own.

Continue reading “Turning A Lada Into An EV With 50 Cordless Drills, Because Why Not?”

Behold A Geared, Continuously Variable Transmission

When it comes to transmissions, a geared continuously-variable transmission (CVT) is a bit of a holy grail. CVTs allow smooth on-the-fly adjustment of gear ratios to maintain a target speed or power requirement, but sacrifice transmission efficiency in the process. Geared transmissions are more efficient, but shift gear ratios only in discrete steps. A geared CVT would hit all the bases, but most CVTs are belt drives. What would a geared one even look like? No need to wonder, you can see one for yourself. Don’t miss the two videos embedded below the page break.

The outer ring is the input, the inner ring is the output, and the three little gears with dots take turns transferring power.

The design is called the RatioZero and it’s reminiscent of a planetary gearbox, but with some changes. Here’s how the most visible part works: the outer ring is the input and the inner ring is the output. The three small gears inside the inner ring work a bit like relay runners in that each one takes a turn transferring power before “handing off” to the next. The end result is a smooth, stepless adjustment of gear ratios with the best of both worlds. Toothed gears maximize transmission efficiency while the continuously-variable gear ratio allows maximizing engine efficiency.

There are plenty of animations of how the system works but we think the clearest demonstration comes from [driving 4 answers] with a video of a prototype, which is embedded below. It’s a great video, and the demo begins at 8:54 if you want to skip straight to that part.

One may think of motors and gearboxes are a solved problem since they have been around for so long, but the opportunities to improve are ongoing and numerous. Even EV motors have a lot of room for improvement, chief among them being breaking up with rare earth elements while maintaining performance and efficiency.

Continue reading “Behold A Geared, Continuously Variable Transmission”

Electric Bike Uses No Electronics, Weird Motor

E-bikes combine a bicycle with a big lithium battery, a speed controller, and a motor. What you get from that combination is simple, efficient transportation. [Tom Stanton] wanted to build an e-bike himself, but he did it without any of the fancy electronic components. But the real gem? The weird janky motor he built to run it.

The concept is simple. An e-bike is electric, in that it has an electric motor and a source of electric power. However, [Tom] intended to eliminate the electronic parts—the speed controller, any battery balancing hardware, and the like. Just think no transistors and microchips and you’ve got the right idea. Basically, [Tom] just built an e-bike with motor weak enough that it doesn’t need any fancy throttle control. He can just turn the motor hard on or off with a switch.

The bike is built around a reed switch motor. This uses magnets on a rotor, which interact with a reed switch to time pulses of electricity to coils which drive the motor. [Tom] wound the coils and built the motor from scratch using 3D printed components. The project quickly ran into problems as the reed switch began to suffer degradation from arcing, which [Tom] solved with some innovative tungsten contacts.

Controlling the bike is pretty simple—there’s just a switch connecting a capacitor bank to the motor to provide power on command. No electronics! However, [Tom] has also neatly set up the motor to charge a bank of supercapacitors when coasting downhill. In this regard, the bike can store power on a descent and then use it for a boost when required later on. Between the weird motor and the weedy capacitor bank, it doesn’t do much, but it does work.

If he’s looking for a more potent power source, perhaps the answer is already out on the street — in the form of a battery pack salvaged from the cells in discarded vapes.
Continue reading “Electric Bike Uses No Electronics, Weird Motor”

A chocolate coating machine works in the round to enrobe mint Oreos.

Chocolate-Coating Machine Mk. 2: The Merry-Go-Round

This holiday season, [Chaz] wanted to continue his family’s tradition of enrobing a little bit of everything in dark chocolate, and built an improved, rotating chocolate-coating machine.

You may remember last year’s offering, aka the conveyor belt version. Although that one worked, too much chocolate was ultimately lost to the surface of the kitchen table. [Chaz] once again started with a standard chocolate fountain and bought a round wire rack that fits the circumference of the bowl at the bottom. He snipped a hole in the center large enough to accommodate the business part of the fountain and printed a collar with holes that he cleverly zip-tied to the rack.

[Chaz] also printed a large gear to go around the bowl, a small gear to attach to a six RPM motor, a motor mount for the bowl, and an air blade attachment for a portable Ryobi fan. The air blade worked quite well, doing the double duty of distributing the chocolate and thinning out the coating. Plus, it gives things a neat rumpled look on the top.

Want to make some special chocolates this year, but don’t want to build an enrober? Get yourself a diffraction grating and make some rainbow goodies with melted chocolate.

Continue reading “Chocolate-Coating Machine Mk. 2: The Merry-Go-Round”

Microfluidic Motors Could Work Really Well For Tiny Scale Tasks

The vast majority of motors that we care about all stick to a theme. They rely on the electromagnetic dance between electrons and magnets to create motion. They come in all shapes and sizes and types, but fundamentally, they all rely on electromagnetic principles at heart.

And yet! This is not the only way to create a motor. Electrostatic motors exist, for example, only they’re not very good because electrostatic forces are so weak by comparison. Only, a game-changing motor technology might have found a way to leverage them for more performance. It achieves this by working with fluid physics on a very small scale.

Continue reading “Microfluidic Motors Could Work Really Well For Tiny Scale Tasks”

Small Volumetric Lamp Spins At 6000 RPM

Volumetric displays are simply cool. Throw some LEDs together, take advantage of persistence of vision, and you’ve really got something. [Nick Electronics] shows us how its done with his neat little volumetric lamp build.

The concept is simple. [Nick] built a little device to spin a little rectangular array of LEDs. A small motor in the base provides the requisite rotational motion at a speed of roughly 6000 rpm. To get power to the LEDs while they’re spinning, the build relies on wire coils for power transmission, instead of the more traditional technique of using slip rings.

The build doesn’t do anything particularly fancy—it just turns on the whole LED array and spins it. That’s why it’s a lamp, rather than any sort of special volumetric display. Still, the visual effect is nice. We’ve seen some other highly capable volumetric displays before, though. Video after the break.
Continue reading “Small Volumetric Lamp Spins At 6000 RPM”

A Wobble Disk Air Motor With One Moving Part

In general, the simpler a thing is, the better. That doesn’t appear to apply to engines, though, at least not how we’ve been building them. Pistons, cranks, valves, and seals, all operating in a synchronized mechanical ballet to extract useful work out of some fossilized plankton.

It doesn’t have to be that way, though, if the clever engineering behind this wobbling disk air engine is any indication. [Retsetman] built the engine as a proof-of-concept, and the design seems well suited to 3D printing. The driven element of the engine is a disk attached to the equator of a sphere — think of a model of Saturn — with a shaft running through its axis. The shaft is tilted from the vertical by 20° and attached to arms at the top and bottom, forming a Z shape. The whole assembly lives inside a block with intake and exhaust ports. In operation, compressed air enters the block and pushes down on the upper surface of the disk. This rotates the disc and shaft until the disc moves above the inlet port, at which point the compressed air pushes on the underside of the disc to continue rotation.

[Resetman] went through several iterations before getting everything to work. The main problems were getting proper seals between the disc and the block, and overcoming the friction of all-plastic construction. In addition to the FDM block he also had one printed from clear resin; as you can see in the video below, this gives a nice look at the engine’s innards in motion. We’d imagine a version made from aluminum or steel would work even better.

If [Resetman]’s style seems familiar, it’s with good reason. We’ve featured plenty of his clever mechanisms, like this pericyclic gearbox and his toothless magnetic gearboxes.

Continue reading “A Wobble Disk Air Motor With One Moving Part”