A Modern Version Of Famous, Classic Speaker

Modern musicians may take for granted that a wide array of musical instruments can either be easily connected to a computer or modeled entirely in one, allowing for all kinds of nuanced ways of creating unique sounds and vivid pieces of music without much hardware expense. Not so in the 1930s. Musicians of the time often had to go to great lengths to generate new types of sounds, and one of the most famous of these was the Leslie speaker, known for its unique tremolo and vibrato. Original Leslies could cost thousands now, though, so [Levi Graves] built a modern recreation.

The Leslie speaker itself got its characteristic sound by using two speakers. The top treble speaker was connected to a pair of horns (only one of which produced sound, the other was used for a counterweight) on a rotating platform. The second speaker in the bottom part of the cabinet faced a rotating drum. Both the horns and drum were rotated at a speed chosen by the musician and leading to its unique sound. [Levi] is actually using an original Leslie drum for his recreation but the sound is coming out of a 100-watt “mystery” speaker, with everything packaged neatly into a speaker enclosure. He’s using a single-speed Leslie motor but with a custom-built foot switch can employ more fine-tuned control over the speed that the drum rotates.

Even though modern technology allows us to recreate sounds like this, often the physical manipulation of soundwaves like this created a unique feeling of sound that can’t be replicated in any other way. That’s part of what’s driven the popularity of these speakers throughout the decades, as well as the Hammond organs they’re often paired with. The tone generators on these organs themselves are yet another example of physical hardware providing a unique, classic sound not easily replicated.

Continue reading “A Modern Version Of Famous, Classic Speaker”

A Wood Chipper From First Principles

For whatever reason, certain pieces of technology can have a difficult time interacting with the physical world. Anyone who has ever used a printer or copier can attest to this, as can anyone whose robot vacuum failed to detect certain types of non-vacuumable waste in their path, making a simple problem much worse. Farm equipment often falls into this category as well, where often complex machinery needs an inordinate amount of maintenance and repair just to operate normally. Wood chippers specifically seem to always get jammed or not work at all, so [Homemade Inventions] took a shot at building one on their own.

To build this screw-based wood chipper, the first thing to fabricate is the screw mechanism itself. A number of circles of thick steel were cut out and then shaped into pieces resembling large lock washers. These were then installed on a shaft and welded end-to-end, creating the helical screw mechanism. With the “threads” of the screw sharpened it is placed into a cylinder with a port cut out to feed the wood into. Powering the screw is a 3 kW electric motor paired with a custom 7:1 gearbox, spinning the screw at around 200 rpm. With that, [Homemade Inventions] has been able to easily chip branches up to 5 centimeters thick, and theorizes that it could chip branches even thicker than that.

Of course, wood chippers are among the more dangerous tools that are easily available to anyone with enough money to buy one or enough skill to build one, along with chainsaws, angle grinders, and table saws, so make sure to take appropriate safety precautions when using or building any of these things. Of course, knowing the dangers of these tools have led to people attempting to make safer versions like this self-propelled chainsaw mill or the semi-controversial table saw safety standard.

Thanks to [Keith] for the tip!

Continue reading “A Wood Chipper From First Principles”

Backyard Rope Tow From Spare Parts

A few years ago, [Jeremy Makes Things] built a rope tow in his back yard so his son could ski after school. Since the lifts at the local hill closed shortly after schools let out, this was the only practical way for his son to get a few laps in during the week. It’s cobbled together from things that [Jeremy] had around the house, and since the original build it’s sat outside for a few years without much use. There’s been a lot more snow where he lives this year though, so it’s time for a rebuild.

The power source for the rope tow is an old gas-powered snowblower motor, with a set of rollers and pulleys for the rope made out of the back end of a razor scooter. Some polyurethane was poured around the old wheel hub so that the rope would have something to grip onto. The motor needed some sprucing up as well, from carburetor adjustment, fuel tank repairs, and some other pieces of maintenance before it could run again. With that out of the way it could be hoisted back up a tree at the top of the hill and connected to the long rope.

This isn’t the first time [Jeremy] has had to perform major maintenance on this machine either. Three years ago it needed plenty of work especially around the polyurethane wheel where [Jeremy] also had to machine a new wheel bearing in addition to all the other work that had to go into repairing it that time. From the looks of things though it’s a big hit with his son who zips right back up the hill after each ski run. Getting to the tops of ski runs with minimal effort has been a challenge of skiers and snowboarders alike for as long as the sport has been around, and we’ve seen all kinds of unique solutions to that problem over the years.

You’ve Got All Year To Print This Marble Machine Ornament For Your Christmas Tree

Most Christmas ornaments just hang there and look pretty. [Sean Hodgins] decided to whip up something altogether fancier and more mechanical. It’s a real working marble machine that hangs from the tree!

The build is simple enough, beginning with a translucent Christmas ornament shell readily available from most craft stores. Inside, a small motor spins a pinion, which turns a larger gear inside the body. As the larger gear spins, magnets embedded inside pick up steel balls from the base of the ornament and lift them up to the top. As they reach their zenith, they’re plucked off by a scoop, and then they roll down a spiral inside. As for power, [Sean] simply handled that with a couple of wires feeding the motor from a USB power bank. Just about any small battery pack would do fine.

The build is beautiful to watch and to listen to, with a gentle clacking as the balls circulate around. Files are on MakerWorld for the curious. We’ve featured some great Christmas decorations before, too. Video after the break.

Investigating Electromagnetic Magic In Obsolete Machines

Before the digital age, when transistors were expensive, unreliable, and/or nonexistent, engineers had to use other tricks to do things that we take for granted nowadays. Motor positioning, for example, wasn’t as straightforward as using a rotary encoder and a microcontroller. There are a few other ways of doing this, though, and [Void Electronics] walks us through an older piece of technology called a synchro (or selsyn) which uses a motor with a special set of windings to keep track of its position and even output that position on a second motor without any digital processing or microcontrollers.

Synchros are electromagnetic devices similar to transformers, where a set of windings induces a voltage on another set, but they also have a movable rotor like an electric motor. When the rotor is energized, the output windings generate voltages corresponding to the rotor’s angle, which are then transmitted to another synchro. This second device, if mechanically free to move, will align its rotor to match the first. Both devices must be powered by the same AC source to maintain phase alignment, ensuring their magnetic fields remain synchronized and their rotors stay in step.

While largely obsolete now, there are a few places where these machines are still in use. One is in places where high reliability or ruggedness is needed, such as instrumentation for airplanes or control systems or for the electric grid and its associated control infrastructure. For more information on how they work, [Al Williams] wrote a detailed article about them a few years ago.

Continue reading “Investigating Electromagnetic Magic In Obsolete Machines”

A dismantled drill on a cluttered workbench

Going Brushless: Salvaging A Dead Drill

Let’s face it—seeing a good tool go to waste is heartbreaking. So when his cordless drill’s motor gave up after some unfortunate exposure to the elements, [Chaz] wasn’t about to bin it. Instead, he embarked on a brave journey to breathe new life into the machine by swapping its dying brushed motor for a sleek brushless upgrade.

Things got real as [Chaz] dismantled the drill, comparing its guts to a salvaged portable bandsaw motor. What looked like an easy swap soon became a true hacker’s challenge: incompatible gear systems, dodgy windings, and warped laminations. Not discouraged by that, he dreamed up a hybrid solution: 3D-printing a custom adapter to make the brushless motor fit snugly into the existing housing.

The trickiest part was designing a speed control mechanism for the brushless motor—an impressively solved puzzle. After some serious elbow grease and ingenuity, the franken-drill emerged better than ever. We’ve seen some brushless hacks before, and this is worth adding to the list. A great tool hack and successful way to save an old beloved drill. Go ahead and check out the video below!

Continue reading “Going Brushless: Salvaging A Dead Drill”

Turning A Lada Into An EV With 50 Cordless Drills, Because Why Not?

[Garage 54] is no stranger to vehicle-related projects of the “because why not?” variety, and their latest is using 50 cordless drills combined into a monstrous mega-motor to turn a gutted (and extended) Lada into an electric vehicle (EV).

Doing this leans on some of [Garage 54]’s earlier projects, such as replacing the aforementioned Lada’s engine block with a frame containing sixteen chainsaws. That means they don’t need to start completely from scratch, and have a frame design that can drop into the vehicle once the “engine” is constructed.

Fifty cordless drills won’t set any efficiency records for EV engines, but it’s got a certain style.

Here’s what’s in the new engine: each of the drills has its chuck replaced with an aluminum pulley, and belts connect each group of drills to an output shaft. Ideally, every drill motor would run at the same time and at exactly the same speed, but one works with what they have. [Garage 54] originally worked to synchronize the drills by interfacing to each drill’s motor control board, but eventually opted to simply bypass all controls and power each drill’s motor directly from the batteries. Initial tests are done by touching bare cable ends with a turned-away face and squinted eyes, but we expect “Just A Big Switch” to end up in the final assembly.

It looks wild and we can think of more than a few inefficiencies present in a system like this, but the output shaft does turn and torque is being transferred, so the next step is interfacing to the car’s factory gearbox.

If it powers the car in any meaningful way, that Lada might very well become the world’s most gloriously hacked-together EV. And hey, if the power output of the EV motor is disappointing, you can just make your own.

Continue reading “Turning A Lada Into An EV With 50 Cordless Drills, Because Why Not?”