Relive Radio Shack’s Glory Days By Getting Goofy

The Golden Age of Radio Shack was probably sometime in the mid-1970s, a time when you could just pop into the local store and pay 49 cents for the resistors you needed to complete a project. Radio Shack was the place to go for everything from hi-fi systems to CB radios, and for many of us, being inside one was very much a kid in a candy store scenario.

That’s not to say that Radio Shack was perfect, but one thing it did very well was the education and grooming of the next generation of electronics hobbyists, primarily through their “Science Fair” brand. Some of us will recall the P-Box kits from that line, complete projects with all the parts and instructions in a plastic box with a perfboard top. These kits were endlessly entertaining and educational, and now [NetZener] has recreated the classic neon “Goofy Light” P-Box project.

As it was back in the day, the Goofy Light is almost entirely useless except for learning about DC-DC converters, multivibrators, RC timing circuits, and the weird world of negative resistance. But by using the original Science Fair instructions, compiling a BOM that can be filled from Mouser or Digikey, and making up a reasonable facsimile of the original P-Box chassis, [NetZener] has done a service to anyone looking for a little dose of nostalgia.

It would be interesting if someone brought back the P-Box experience as a commercial venture, offering a range of kits with circuits like the originals. If that happens, maybe some of the offerings will be based on that other classic from Radio Shack’s heyday.

Continue reading “Relive Radio Shack’s Glory Days By Getting Goofy”

Flashing Light Prize 2018: This Time With Neon

The Flashing Light Prize is back this year with a noble twist. And judging from the small set of entries thus far, this is going to be an interesting challenge.

Last year’s Flashing Light Prize was an informal contest with a simple goal: flash an incandescent lamp in the most interesting way possible. This year’s rules are essentially the same as last year, specifying mainly that the bulb itself has to light up — no mechanical shutters — and that it has to flash at 1 Hz with a 50% duty cycle for at least five minutes. But where last year’s contest specified incandescent lamps, this year you’ve got to find a way to flash something with neon in it. It could be an off-the-shelf neon pilot light, a recycled neon sign, or even the beloved Nixie tube. But we suspect that points will be awarded for extreme creativity, so it pays to push the envelope. Last year’s winner used a Wimhurst machine to supply the secondary of an ignition coil and flash a pair of bulbs connected across the primary, so the more Rube Goldberg-esque, the better your chances.

There are only a handful of entries right now, with our favorite being [Ben Krasnow]’s mashup of electricity, mechanics, chemistry, and physics. You’ve got until March 15th to post your flashing neon creation, and there are two categories this year, each with a £200 prize. Get your flash on and win this one for Hackaday.

Continue reading “Flashing Light Prize 2018: This Time With Neon”

Touch Sensitive Cement With Just A Dash Of Neon

For quite some time now we’ve seen people casting their own countertops and other surfaces out of cement. It’s a combination of mold-making and surface finishing that produces a smooth and durable surface at quite a low cost, if you don’t factor in damage done to your back when lifting the thing for installation.

This offering is a little bit different. [Elliott Spelman] built his own touch sensitive cement table top. When you place your grubby hands on the polished surface, a loop of neon lighting is switched on. This is thanks to a 4:1 mix of quick setting cement and iron oxide powder. Bare copper wire was laid around the edges of the surface to be encased by the cement for making connections later.

There were some sad moments when [Elliott] was removing the cast surface from the mold. He ended up cracking it and suggests others be liberal with their use of both wax on the mold before casting, and patience in removing the cement afterward. We might also suggest a strengthening agent like fiber reinforcement. The edges and surface can be sanded to the finish desired and in this case, attaching table legs was easy since the wooden underside of the mold remains on the bottom of the cement.

The neon lighting adds a retro touch to this build. It’s sad to see this technology dying away, so a resurgence of artisanal neon is great in our book. [Elliott] found a Bay Area arts collective called the Crucible which does a lot of art glass education to help him make two hoops of glass tube and fill them with the appropriate gasses. A capacitive touch sensor (once Atmel, now Microchip part) AT42QT2120 (datasheet) monitors the wire coming from the slab and switches the power supply for the tubes using a combination of relay board and Arduino Uno.

We find the prospect of positional sensing in doped cement fascinating. Anyone have ideas for adapting this technique so that a more long and narrow slab could have positional awareness within, say, a few inches? Let us know in the comments.

Continue reading “Touch Sensitive Cement With Just A Dash Of Neon”

Play Music On A High Voltage Keyboard

[Matt] works at a neon sign power supply company. When a vendor error left him with quite a few defective high voltage transformers, he couldn’t bring himself to toss them in the bin. [Matt] was able to fix the transformers well enough to work, and the idea for a high voltage keyboard began to brew. Unfortunately, the original transformers were not up to the task of creating a musical arc. At that point the project had taken on a life of its own. Matt grabbed some higher power transformers and started building.

The keyboard has 25  keys, each connected to an individual high voltage circuit with its own spark gap. The HV circuit is based upon a IR2153D self-oscillating half-bridge driver. (PDF link). The 2153D is modulated by a good old-fashioned 555 timer chip. No micros in this design, folks! The output of the IR2153D switches a pair of N-channel MOSFETS which drive the flyback transformers.

[Matt] created 25 copies of his circuit and built them up on individual PCBs. He assembled everything on a wooden board shaped roughly like a grand piano. The final project looks great – though [Matt] admittedly has no musical ability, so we can’t hear AC/DC flying out of those spark gaps just yet.

If you do want to hear sparks playing music, check out the OneTesla project we saw at MakerFaire NY 2013.

Continue reading “Play Music On A High Voltage Keyboard”

Building A CO2 Laser In A Hardware Store

Over on the Projects site, [ThunderSqueak] is pushing the bounds of what anyone would call reasonable and is building a CO2 laser from parts that can be found in any home improvement store.

Despite being able to cut wood, paper, and a bunch of other everyday materials, a carbon dioxide laser is actually surprisingly simple. All you need to do is fill a tube with CO2, put some mirrors and lenses on each end, and run an electric current through the gas. In practice, though, there’s a lot of extra bits and bobs required for a working laser.

[ThunderSqueak] will need some sort of cooling for his laser, and for that he’s constructed a watercooling jacket out of 2″ PVC. In the end caps, a pair of brass pipe fittings are JB Welded in place, allowing a place for the mirror assembly and lenses.

The mirror mounts are the key component of this build, but the construction method is surprisingly simple. [ThunderSqueak] is using a few brass barbed hose fittings, with washers stuck on one end. The washers are drilled to accept a trio of bolts that will allow the mirrors to be perfectly parallel; anything less and the CO2 won’t lase.

The build isn’t complete yet, but having already built a few lasers, there’s little doubt [ThunderSqueak] will be able to pull this one off as well.

 

Measuring The Lifespan Of Nixie Tubes

nixie

Nixie tubes have two things going for them: they’re awesome, and they’re out of production. If you’re building a clock – by far the most popular Nixie application, you’re probably wondering what the lifespan of these tubes are. Datasheets from the manufacturers sometimes claim a lifetime as low as 1000 hours, or a month and a half if you’re using a tube for a clock. Obviously some experimentation is in order to determine the true lifetime of these tubes.

Finding an empirical value for the lifetime of Nixies means setting up an experiment and waiting a very, very long time. Luckily, the folks over at SALTechips already have a year’s worth of data.

Their experimental setup consists of an IN-13 bargraph display driven with a constant current sink. The light given off by this Nixie goes to a precision photometer to log the visual output. Logging takes place once a week, and the experiment has been running for 57 weeks so far.

All the data from this experiment is available on the project page, along with a video stream of the time elapsed and current voltage. So far, there’s nothing to report yet, but we suppose that’s a good thing.

Retrotechtacular: First Laser Transmitter Built 50 Years Ago

helium-neon-laser-transmitter

Most of the time we feature hokey film footage in our Retrotechtacular series, but we think this hack is as cool today as it was fifty years ago. [Clint] wrote in to tell us about Operation Red Line. It was an experiment performed May 3rd and 4th, 1963, which means the 50th anniversary just passed a few weeks ago. The hack involved sending data (audio in this case) over long distances using a laser. But back then you couldn’t just jump on eBay and order up the parts. The team had to hack together everything for themselves.

They built their own helium-neon laser tube, which is shown on the right. The gentlemen involved were engineers at a company called Electro-Optical System (EOS) by day, and Ham radio enthusiasts by night. With the blessing of their employer they were able to ply their hobby skills using the glass blowing and optical resources from their work to get the laser up and running. With that side of things taken care of they turned to the receiving end. Using a telescope and a photomultipler they were able to pick up the beam of light at a distance of about 119 miles. The pinnacle of their achievement was modulating audio on the transmitter, and demodulating it with the receiver.

[Clint] knows the guys who did this and wrote up a look back at the project on his own blog.