Upgraded Film Scanner Handles Bigger Formats At No Cost

Film scanners are a useful tool for digitizing slides and negatives, and the Plustek 8100 that [Christian Chapman] had was capable, but limited to small format film only. Rather than pay for a much more expensive medium format scanner that could handle 120 film, he modified his 8100 to accomplish the same thing with a combination of good old software and hardware tampering.

On the software side, [Christian] modified a driver for the Plustek 8100 so that it sweeps the scan head further than usual. At the application level, to scan medium format frames, it does a total of four scans: one for each quadrant. The results get stitched together in software with a thoughtfully-designed shell script that provides previews and handles failures and restarts gracefully.

Hardware-wise, the scanning carriage needs modification to ensure nothing interferes with the scan head as it moves further than originally designed. Some CAD and 3D printing made short work of this. Incidentally, this hardware mod is an excellent demonstration of one of the core strengths of 3D printing: the ability to make geometrically-straightforward objects that would nevertheless be troublesome or impractical to construct in any other way.

Trying Out A 3D Printed Microscope Lens Adapter

If you want to take pictures of tiny things close up, you need a macro lens. Or a microscope. [Nicholas Sherlock] thought “Why not both?” He designed a 3D-printed microscope lens adapter that you can find on Thingiverse. Recently, [Micael Widell] tried it out with a microscope lens and you can see the results in the video below.

A $20 microscope lens allows for some amazing shots. There are two designs that fit different cropped-image and full-frame cameras. As you might expect, the depth of field is razor-thin, probably sub-millimeter. Additionally, with a 4X lens on a 35 mm sensor, the field of view is about 9 mm so you have to have a steady hand just to keep everything in frame.

Continue reading “Trying Out A 3D Printed Microscope Lens Adapter”

AI Image Generation Sharpens Your Bad Photos And Kills Photography?

We don’t fully understand the appeal of asking an AI for a picture of a gorilla eating a waffle while wearing headphones. However, [Micael Widell] shows something in a recent video that might be the best use we’ve seen yet of DALL-E 2. Instead of concocting new photos, you can apparently use the same technology for cleaning up your own rotten pictures. You can see his video, below. The part about DALL-E 2 editing is at about the 4:45 mark.

[Nicholas Sherlock] fed the AI a picture of a fuzzy ladybug and asked it to focus the subject. It did. He also fed in some other pictures and asked it to make subtle variations of them. It did a pretty good job of that, too.

Continue reading “AI Image Generation Sharpens Your Bad Photos And Kills Photography?”

Laser Brings Autofocus To Tricked-Out Large Format Film Camera

You can’t argue with the results of large-format film cameras — picture the boxy bellows held by a cigar-chomping big-city press photographer of the 1940s — but they don’t really hold a candle to the usability and portability of even the earliest generations of 35mm cameras. And add in the ease-of-use features of later film and digital cameras, and something like a 4×5 Graflex seems like a real dinosaur.

Or maybe not. [Aleksi Koski] has built a large-format camera with autofocus, the “Conflict 45.” The problem with a lot of the large-format film cameras, which tend to be of a non-reflex optical design, is that it’s difficult or even impossible to see what you’re shooting through the lens. This makes focusing a bit of a guessing game, a problem that [Aleksi] addresses with his design. Sadly, the linked Petapixel article is basically devoid of technical details, but from what we can glean from it and the video below, the Conflict 45 is a 4″x5″ sheet-film camera that has a motorized lens board and a laser rangefinder. A short video has a through-viewfinder view showing an LCD overlay, which means there’s some kind of microcontroller on board as well, which is probably used for the calculations needed to compensate for parallax errors during close focusing, as well as other uses.

The camera is built from 3D printed parts; [Aleksi] says that this is just a prototype and that the finished camera will have a carbon-fiber body. We’d love to see more build details, but for now, we just love the idea of an easy-to-use large-format camera. Just maybe not that big.

Continue reading “Laser Brings Autofocus To Tricked-Out Large Format Film Camera”

Will We Ever Shake The Polaroid Picture?

Today, most of us carry supercomputers in our pockets that happen to also take instantly-viewable pictures.This is something that even the dumbest phones do, meaning that we can reasonably draw the conclusion that photographic capability has become a basic feature of everyday carry, a necessity of 21st century life.

Despite the unwashed masses of just-plain-bad photographs clouding the digital landscape, photography itself remains as important as ever so we can retain and disseminate information as history unfolds. In a sense, the more instant, the better — unless it comes at the cost of image quality. The invention of photography is on par with the printing press or with language itself in that all three allow us to communicate within our own time as well as preserve The Way Things Were in frozen silence. And no invention made vivid preservation more convenient than the instant camera.

Continue reading “Will We Ever Shake The Polaroid Picture?”

New Tech And The Old Ways

This week on Hackaday, we featured a project that tickled my nostalgia bone, and proved that there are cool opportunities when bringing new tech to old problems. Let me explain.

[Muth] shared a project with us that combines old-school analog photography printing with modern LCD screens. The basic idea is to use a 4K monochrome screen in place of a negative, making a contact print by placing the screen directly on top of photographic paper and exposing it under a uniform light source. Just like the old ways, but with an LCD instead of film.

LCD exposure animationBut what’s the main difference between a screen and film? You can change the image on the LCD at will, of course. So when [Muth] was calibrating out exposures, it dawned on him that he could create a dynamic, animated version of his image and progressively expose different portions of the paper, extending the available dynamic range and providing him the ability to control the slightest nuances of the resulting image contrast.

As an old photo geek, this is the sort of trick that we would pull off manually in the darkroom all the time. “Dodging” would lighten up a section of the image by covering up the projected light with your hand or a special tool for a part of the exposure time. With [Muth]’s procedure, he can dodge the image programmatically on the per-pixel level. We would have killed for this ability back in the day.

The larger story here is that by trying something out of the box, applying a new tool to an old procedure, [Muth] stumbled on new capabilities. As hackers, we’re playing around with the newest tech we can get our hands on all the time. When you are, it might be that you also stumble on new possibilities simply afforded by new tech. Keep your eyes open!

Digital To Analog In The Darkroom

As the world becomes more and more digital, there are still a few holdouts from the analog world we’ve left behind. Vinyl records are making quite the comeback, and film photography is still hanging on as well. While records and a turntable have a low barrier for entry, photography is a little more involved, especially when developing the film. But with the right kind of equipment you can bridge the gap from digital to analog with a darkroom setup that takes digital photographs and converts them to analog prints.

The project’s creator, [Muth], has been working on this project since he found a 4K monochrome display. These displays are often used in resin 3D printers, but he thought he could put them to use developing photographs. This is much different from traditional darkroom methods, though. The monochrome display is put into contact with photo-sensitive paper, and then exposed to light. Black pixels will block the light while white pixels allow it through, creating a digital-to-analog negative of sorts. With some calibration done to know exactly how long to expose each “pixel” of the paper, the device can create black-and-white analog images from a digital photograph.

[Muth] notes that this method isn’t quite as good as professional print, but we wouldn’t expect it to be. It creates excellent black-and-white prints with a unique method that we think generates striking results. The 4K displays needed to reproduce this method aren’t too hard to find, either, so it’s fairly accessible to those willing to build a small darkroom to experiment. For those willing to go further, take a look at some other darkroom builds we’ve seen in the past.

Continue reading “Digital To Analog In The Darkroom”