POV On The Flipper Zero

The Flipper Zero can do all kinds of neat stuff, like helping you cut keys or decode various radio transmissions. However, until now, it hasn’t been particularly adept at persistence of vision tasks. The LightMessenger was designed for that very purpose, and [Derek] recently wrote up a deep-dive into the interesting gadget.

The device doing its job.

The LightMessenger is a hardware add-on module developed by LAB401 in collaboration with [TIX LE GEEK] for the Flipper Zero. In persistence-of-vision mode, you can plug it in via the GPIO header and display messages in the air by shaking it around. Even better, you can do so in color, with a height resolution of 16 pixels—meaning you can display some nice text or basic graphics. You can key in different text or select and edit bitmaps using the utility on the Flipper screen itself. There’s even a simple flashlight mode, because why not?

In the second part of [Derek]’s write-up, he also goes into detail on the development and manufacturing process for the device.

Files are on GitHub for the curious. We’ve gone over the basics of POV projects before, too.

Continue reading “POV On The Flipper Zero”

RP2040 Spins Right ‘Round Inside POV Display

Sometimes, a flat display just won’t cut it. If you’re looking for something a little rounder, perhaps your vision could persist in in looking at [lhm0]’s rotating LED sphere RP2040 POV display.

As you might have guessed from that title, this persistence-of-vision display uses an RP2040 microcontroller as its beating (or spinning, rather) heart. An optional ESP01 provides a web interface for control. Since the whole assembly is rotating at high RPM, rather than slot in dev boards (like Pi Pico) as is often seen, [lhm0] has made custom PCBs to hold the actual SMD chips. Power is wireless, because who wants to deal with slip rings when they do not have to?

The LED-bending jig is a neat hack-within-a-hack.

[lhm0] has also bucked the current trend for individually-addressable LEDs, opting instead to address individual through-hole RGB LEDs via a 24-bit shift-register. Through the clever use of interlacing, those 64 LEDs produce a 128 line display. [lhm0] designed and printed an LED-bending jig to aid mounting the through-hole LEDs to the board at a perfect 90 degree angle.

What really takes this project the extra mile is that [lhm0] has also produced a custom binary video/image format for his display, .rs64, to encode images and video at the 128×256 format his sphere displays. That’s on github,while a seperate library hosts the firmware and KiCad files for the display itself.

This is hardly the first POV display we’ve highlighted, though admittedly it isn’t the cheapest one. There are even other spherical displays, but none of them seem to have gone to the trouble of creating a file format.

If you want to see it in action and watch construction, the video is embedded below.

Continue reading “RP2040 Spins Right ‘Round Inside POV Display”

A man is looking at a volumetric display while using one finger to interact with it. Two roughly-spherical blue shapes are visible in the display, and he is moving his index finger toward one of them.

Elastic Bands Enable Touchable Volumetric Display

Amazing as volumetric displays are, they have one major drawback: interacting with them is complicated. A 3D mouse is nice, but unless you’ve done a lot of CAD work, it’s a bit unintuitive. Researchers from the Public University of Navarra, however, have developed a touchable volumetric display, bringing touchscreen-like interactions to the third dimension (preprint paper).

At the core, this is a swept-volume volumetric display: a light-diffusing screen oscillates along one axis, while from below a projector displays cross-sections of the scene in synchrony with the position of the screen. These researchers replaced the normal screen with six strips of elastic material. The finger of someone touching the display deforms one or more of the strips, allowing the touch to be detected, while also not damaging the display.

The actual hardware is surprisingly hacker-friendly: for the screen material, the researchers settled on elastic bands intended for clothing, and two modified subwoofers drove the screen’s oscillation. Indeed, some aspects of the design actually cite this Hackaday article. While the citation misattributes the design, we’re glad to see a hacker inspiring professional research.) The most exotic component is a very high-speed projector (on the order of 3,000 fps), but the previously-cited project deals with this by hacking a DLP projector, as does another project (also cited in this paper as source 24) which we’ve covered.

While interacting with the display does introduce some optical distortions, we think the video below speaks for itself. If you’re interested in other volumetric displays, check out this project, which displays images with a levitating styrofoam bead.

Continue reading “Elastic Bands Enable Touchable Volumetric Display”

A business-card-sized fidget spinner with the Hackaday logo.

2024 Business Card Challenge: POV Fidget Keeps Your Info In Their Hands

So what if we’re halfway through 2024? People who needed to fidget all along still need something to do with their hands. So why not hand them a solution with your information on it?

Not only will this spin nicely, the spinning action will use magnets to energize PCB coils and light up LEDs for some persistence of vision action. Designing the PCB was easier than you might imagine thanks to KiMotor, a KiCad plugin to automate the design of parametric PCB motors.

Mechanical testing went pretty well with the bearings and magnets that [mulcmu] had on hand, along with a scrap PCB as the sacrifice. Although a bit difficult to hold, it spins okay with just the bearing and the shaft. Once the boards arrived, it was time to test the electrical side. So far, things are not looking good — [mulcmu] is only getting a few tens of mV out of the rectifier — but they aren’t giving up hope yet. We can’t wait to see this one in action!

Hurry! This is the last weekend to enter the 2024 Business Card Challenge! Technically you have until Tuesday, July 2nd, but you know what we mean. Show us what you’ve got!

BikeBeamer Adds POV Display To Bicycle Wheels

Unless you’re living in a bicycle paradise like the Netherlands, most people will choose to add some sort of illumination to their bicycle to help drivers take note that there’s something other than a car using the road. Generally, simple flashing LEDs for both the front and the rear is a pretty good start, but it doesn’t hurt to add a few more lights to the bicycle or increase their brightness. On the other hand, if you want to add some style to your bicycle lighting system then this persistence of vision (POV) display called the BikeBeamer from [locxter] might be just the thing.

The display uses four LED strips, each housed in their own 3D printed case which are installed at 90-degree angles from one another in between the spokes of a standard bicycle wheel. An ESP32 sits at the base of one of the strips and is responsible for storing the image and directing the four displays. This is a little more complex than a standard POV display as it’s also capable of keeping up with the changing rotational speeds of the bicycle wheels when in use. The design also incorporates batteries so that no wires need to route from the bike frame to the spinning wheels.

This is an ongoing project for [locxter] as well, meaning that there are some planned upgrades even to this model that should be in the pipe for the future. Improving the efficiency of the code will hopefully allow for more complex images and even animations to be displayed in the future, and there are also some plans to improve the PCB as well with all surface-mount components. There are a few other ways to upgrade your bike’s lighting as well, and we could recommend this heads-up headlight display to get started.

A persistence-of-vision business card which displays information when shaken (not stirred).

2024 Business Card Challenge: Make Them Shake Your Handiwork

Before COVID, people traditionally sealed their initial introduction to each other with a handshake. Nowadays, that activity seems kind of questionable. But you can still give them something to shake if you build this persistence of vision (POV) business card from [chaosneon] to show your credentials in blinkenlights form.

As you might have guessed, the input comes from a tilt switch. The user simply shakes the card back and forth, and the sensor detects the direction and cadence of the shake. Cleverly, the pattern plays forward-ways on the swing, and backwards on the back stroke, which just reinforces the POV effect. Don’t worry about how slow or fast to shake it, because the timing adjusts for your speed.

The first version used individual white LEDs, hand-soldered to an ATtiny2313. Now, in the updated version which you can see in the demo video after the break, [chaosneon] is using an RGB NeoPixel strip, which only needs one data wire to connect to the microcontroller. Thanks to this, [chaosneon] was able to to downsize to an ATtiny85.

Continue reading “2024 Business Card Challenge: Make Them Shake Your Handiwork”

POV Digital Clock Is The Literal Sands Of Time

Sand has been used to keep track of the passage of time since antiquity. But using sand to make a persistence of vision digital clock (English translation) is something altogether new. And it’s pretty cool, too.

The idea behind the timepiece that [Álvaro Gómez Giménez] built is pretty simple drop a tiny slug of fine sand from a hopper and light it up at just the right point in its fall. Do that rapidly enough and you can build up an image of the digits you want to display. Simple in concept, but the devil is in the details. Sand isn’t the easiest material to control, so most of the work went into designing hoppers with solenoid-controlled gates to dispense well-formed slugs of sand at just the right moment. Each digit of the clock has four of these gates in parallel, and controlling when the 16 gates open and close and when the LEDs are turned on is the work of a PIC18F4550 microcontroller.

The build has a lot of intricate parts, some 3D printed and some machined, but all very carefully crafted. We particularly like the big block of clear plastic that was milled into a mount for the main PCB; the translucent finish on the milled surfaces makes a fantastic diffuser for the 96 white LEDs. The clock actually works a lot better than we expected, with the digits easy to make out against a dark background. Check it out in the video below.

Between the noise of 16 solenoids and the sand getting everywhere, we’d imagine it wouldn’t be a lot of fun to have on a desk or nightstand, but the execution is top-notch, and an interesting and unusual concept we haven’t seen before. Sure, we’ve seen sandwriting, but that’s totally different. Continue reading “POV Digital Clock Is The Literal Sands Of Time”