An Amateur Radio Repeater Using An RTL-SDR And A Raspberry Pi

An amateur radio repeater used to be a complex assemblage of equipment that would easily fill a 19″ rack. There would be a receiver and a separate transmitter, usually repurposed from commercial units, a home-made logic unit with a microprocessor to keep an eye on everything, and a hefty set of filters to stop the transmitter output swamping the receiver. Then there would have been an array of power supply units to provide continued working during power outages, probably with an associated bank of lead-acid cells.

More recent repeaters have been commercial repeater units. The big radio manufacturers have spotted a market in amateur radio, and particularly as they have each pursued their own digital standards there has been something of an effort to provide repeater equipment to drive sales of digital transceivers.

But what if you fancy setting up a simple repeater and you have neither a shed full of old radios or a hotline to the sales department of a large Japanese manufacturer? If you are [Anton Janovsky, ZR6AIC], you make your own low-powered repeater using an RTL-SDR, a low-pass filter, and a Raspberry Pi.

[Anton]’s repeater is a clever assemblage through pipes of rtl_sdr doing the receiving, csdr demodulating, and [F5OEO]’s rpitx doing the transmitting. As far as we can see it doesn’t have a toneburst detector or CTCSS to control its transmission so it is on air full-time, however we suspect that may be a feature that will be implemented in due course.

With only a 10 mW output this repeater is more of a toy than a useful device, and we’d suggest any licensed amateur wanting to have a go should read the small print in their licence schedule before doing so. But it’s a neat usage of a Pi and an RTL stick, and with luck it’ll inspire others in the same vein.

We’ve touched on the Pi as a transmitter before, from a straightforward broadcast FM unit to crossing continents with WSPR, and even transmitting digital TV in another [F5OEO] hack.

Creepy Wireless Stalking Made Easy

In a slight twist on the august pursuit of warwalking, [Mehdi] took a Raspberry Pi armed with a GPS, WiFi, and a Bluetooth sniffer around Bordeaux with him for six months and logged all the data he could find. The result isn’t entirely surprising, but it’s still a little bit creepy.

If your WiFi sends out probe requests for its home access points, [Mehdi] logged it. If your Bluetooth devices leak information about what they are, [Mehdi] logged it. In the end, he got nearly 30,000 WiFis logged, including 120,000 probes. Each reading is timestamped and geolocated, and [Mehdi] presents a few of the results from querying the resulting database.

Continue reading “Creepy Wireless Stalking Made Easy”

Running Intel TBB On A Raspberry Pi

The usefulness of Raspberry Pis seems almost limitless, with new applications being introduced daily and with no end in sight. But, as versatile as they are, it’s no secret that Raspberry Pis are still lacking in pure processing power. So, some serious optimization is needed to squeeze as much power out of the Raspberry Pi as possible when you’re working on processor-intensive projects.

This simplest way to accomplish this optimization, of course, is to simply reduce what’s running down to the essentials. For example, there’s no sense in running a GUI if your project doesn’t even use a display. Another strategy, however, is to ensure that you’re actually using all of the available processing power that the Raspberry Pi offers. In [sagiz’s] case, that meant using Intel’s open source Threading Building Blocks to achieve better parallelism in his OpenCV project.

Continue reading “Running Intel TBB On A Raspberry Pi”

NixieBot Films Your Tweets

[Robin Bussell]’s NixieBot is a mash up of new age electronics and retro vintage components and he’s got a bunch of hacks crammed in there. It’s a Nixie tube clock which displays tweets, takes pictures of the display when it encounters tweets with a #NixieBotShowMe hash tag, and then posts requested pictures back to twitter. If a word is eight characters, it takes a snapshot. If it’s a longer message, NixieBot takes a series of pictures of each word, converts it to an animated GIF, and then posts the tweet. In between, it displays random tweets every twenty seconds. You can see the camera setup in the image below and you should check out the @nixiebot twitter feed to see some of the action.

nixiebot_05For the display, he’s using eight big vintage Burroughs B7971 Nixie Tubes. These aren’t easy to source, and current prices hover around $100 each if you can find them. The 170V DC needed to run each tube comes from a set of six 12V to 170V converter boards specifically designed to drive these tubes. Each board can drive at least a couple of nixies, so [Robin]’s able to use just four boards for the eight tubes. Each nixie is driven by its own “B7971 SmartSocket“, a dedicated PIC16F690 micro-controller board custom designed for the purpose. A serial protocol makes it easy to daisy-chain the SmartSockets to build multi character displays.

Continue reading “NixieBot Films Your Tweets”

Slack, Backwards Compatible With 1982

Slack is great, but there are a few small problems with the current implementations. There isn’t a client for Palm, there isn’t a client for the Newton, and there isn’t a client for the Commodore 64. The last of these severe oversights was recently fixed by [Jeff Harris]. He built a native Slack client in 6502 assembly for the Commodore 64.

When dealing with network applications and the C64, the first question that comes to mind is how to talk to the outside world. There are C64 NICs, and ESP dongles, but for this build [Jeff] turned to the C64 Userport. This card edge combination of a serial and parallel port allows the C64 to talk to anything with RS-232, and with a simple adapter, [Jeff] got his old computer talking to a Raspberry Pi connected to the Internet.

The C64 Slack client itself is written in 6502 assembly, and features everything you would expect. The Pi is required to talk to the Slack API, though, and uses a NodeJS app to translate the bits from the C64 to something the API can understand.

Does it work? Of course it does. Slack is just text, after all, and there doesn’t seem to be any PETSCII weirdness here. You can check out a video of the build in action below.

Continue reading “Slack, Backwards Compatible With 1982”

Controlling A Game Room With Amazon Echo

If there are two things we love here at Hackaday, it’s games and automating mundane tasks by adding a lot of electronics and voice control. A game room is, therefore, the perfect sandbox for projects that get us excited in all of the right ways. Liberty Games, a UK-based games room company, already had a really impressive game room (as you might expect). They’ve just posted an awesome build log showcasing how they went about automating mundane game room tasks by adding a lot of electronics and voice control.

There were four tasks that Liberty Games wanted to be able to complete with voice control: releasing billiards balls on their pool table, adding credits to an arcade machine, releasing pinballs on a pinball machine, and control of a CD jukebox. For all of these tasks, they used an Amazon Echo, which already has built-in support for adding new “skills” (Amazon’s term for user-created Alexa commands). These skills allow the Echo to communicate with other devices using JavaScript Object Notation (JSON).

Continue reading “Controlling A Game Room With Amazon Echo”

The Most Flexible Synthesizer Is DIY, Raspberry Pi

[Ivan Franco] sent us this great synthesizer project that he’s working on. Or maybe it’s more like a synthesizer meta-project: a synthesizer construction set. You see, what Pryth has is a Raspberry Pi inside that’s running a custom distribution that includes SuperCollider to generate the sound, OSC for the communication layer, and a Teensy with up to 80 (!) multiplexed analog inputs that you’ll connect up to whatever hardware you desire.

Continue reading “The Most Flexible Synthesizer Is DIY, Raspberry Pi”