2025 Component Abuse Challenge: Relay Used As Guitar Pickup

We’ve all built projects that are a rats’ nest of wiring and feature creep, but the best projects in the end are usually those that use a simple solution to elegantly solve a problem. [Kauz] had been thinking about a unique type of electric guitar pickup for a while and rather than purchase an expensive option or build a complex microcontroller-based system he found his elegant solution in the form of a common electronic component.

The core of this idea is that guitar pickups are essentially coils of wire, and are surprisingly similar to the coils of wire found in electromechanical relays. [Kauz] has used six small relays, left them unmodified, and then built an amplifier circuit for each to allow the vibrations of the guitar strings to resonate in the relay coils, eventually producing a sound. Not only do the relays work perfectly well as pickups, but [Kauz] also created a mixing board that allows the six relays to be combined into two channels, allowing for options like stereo sound for different strings directly out of the guitar or for different effects to be applied to different strings.

The build also allows for some interesting options in future versions as well. [Kauz]’s plans are eventually to build this into an instrument which can output polyphonic MIDI signals, where various strings can behave as different instruments. In theory, with six circuits six different instruments can be produced, and we’re excited to see what the next versions will look and sound like. In the meantime, be sure to check out some other guitar pickups we’ve seen that use even simpler parts found lying around the workbench.

Continue reading “2025 Component Abuse Challenge: Relay Used As Guitar Pickup”

2025 Component Abuse Challenge: Glowing Neon From A 9 V Relay

Most of us know that a neon bulb requires a significant voltage to strike, in the region of 100 volts. There are plenty of circuits to make that voltage from a lower supply, should you wish to have that comforting glow of old, but perhaps one of the simplest comes from [meinsamayhun]. The neon is lit from a 9-volt battery, and the only other component is a relay.

What’s going on? It’s a simple mechanical version of a boost converter, with the relay wired as a buzzer. On each “off” cycle, the magnetic field in the coil collapses, and instead of being harvested by a diode as with a boost converter, it lights the neon. Presumably, the neon also saves the relay contacts from too much wear.

We like this project for its simplicity and for managing to do something useful without a semiconductor or vacuum tube in sight. It’s the very spirit of our 2025 Component Abuse Challenge, for which there is barely time to enter yourself if you have something in mind.

Dead Bug Timer Relay Needs No PCB

We often marvel at the many things a 555 can do. But [Zafer Yildiz] shows us that it can even take the place of a PCB. You’ll see what we mean in the video below. The timer relay circuit is built “dead bug” style with the 555 leads bent out to provide wiring terminals.

Honestly, these kinds of circuits are fun, but we would be reticent to use this type of construction for anything that had to survive in the real world. Solder joints aren’t known for being mechanically stable, so this is good for experiments, but maybe not something you want to do all the time.

Continue reading “Dead Bug Timer Relay Needs No PCB”

2025 One Hertz Challenge: Using Industrial Relays To Make A Flasher

These days, if you want to flash some LEDs, you’d probably grab a microcontroller. Maybe you’d go a little more old-school, and grab a 555. However, [Jacob] is even more hardcore than that, as evidenced by this chunky electromechanical flasher build.

[Jacob] goes into great detail on his ancillary write-up, describing how the simple building blocks used by industrial control engineers can be used to make a flasher circuit that cycles once per second. Basically, two relays are paired with two 0.5-second delay timers. The two relays tag each other on and off on delay as their timers start and expire, with the lamp turned on and off in turn.

We’ve had lots of other great entries to our One Hertz Challenge, too — from clocks to not-clocks. There’s still time to get an entry in — the deadline for submission is Tuesday, August 19 at 9:00AM Pacific time. Good luck out there!

Design Constraints Bring Lockbox To Life

One of the most paradoxical aspects of creating art is the fact that constraints, whether arbitrary or real, and whether in space, time, materials, or rules, often cause creativity to flourish rather than to wither. Picasso’s blue period, Gadsby by Ernest Vincent Wright, Tetris, and even the Volkswagen Beetle are all famous examples of constraint-driven artistic brilliance. Similarly, in the world of electronics we can always reach for a microcontroller but this project from [Peter] has the constraint of only using passive components, and it is all the better for it.

The project is a lockbox, a small container that reveals a small keypad and the associated locking circuitry when opened. When the correct combination of push buttons is pressed, the box unlocks the hidden drawer. This works by setting a series of hidden switches in a certain way to program the combination. These switches are connected through various diodes to a series of relays, so that each correct press of a button activates the next relay. When the final correct button is pushed, power is applied to a solenoid which unlocks the drawer. An incorrect button push will disable a relay providing power to the rest of the relays, resetting the system back to the start.

The project uses a lot of clever tricks to do all of this without using a single microcontroller, including using capacitors that carefully provide timing to the relays to make them behave properly rather than all energizing at the same time. The woodworking is also notable as well, with the circuit components highlighted when the lid is opened (but importantly, hiding the combination switches). Using relays for logic is not a novel concept, though; they can be used for all kinds of complex tasks including replacing transistors in single-board computers.

Continue reading “Design Constraints Bring Lockbox To Life”

Multifunctional USB controlled PCB on blue background

How A Tiny Relay Became A USB Swiss Army Knife

Meet the little board that could: [alcor6502]’s tiny USB relay controller, now evolved into a multifunction marvel. Originally built as a simple USB relay to probe the boundaries of JLCPCB’s production chops, it has become a compact utility belt for any hacker’s desk drawer. Not only has [alcor6502] actually built the thing, he even provided instructions. If you happened to be at Hackaday in Berlin, you now might even own one, as he handed out twenty of them during his visit. If not, read on and build it yourself.

This thing is not just a relay, and that is what makes it special. Depending on a few solder bridges and minimal components, it shape-shifts into six different tools: a fan controller (both 3- and 4-pin!), servo driver, UART interface, and of course, the classic relay. It even swaps out a crystal oscillator for USB self-sync using STM32F042‘s internal RC – no quartz, less cost, same precision. A dual-purpose BOOT0 button lets you flash firmware and toggle outputs, depending on timing. Clever reuse, just like our mothers taught us.

It’s the kind of design that makes you want to tinker again. Fewer parts. More function. And that little smile when it just works. If this kind of clever compactness excites you too, read [alcor6502]’s build log and instructions here.

Decoy Killswitch Triggers Alarm Instead

There are a few vehicles on the road that are targeted often by car thieves, whether that’s because they have valuable parts, the OEM security is easily bypassed, or even because it’s an antique vehicle that needs little more than a screwdriver to get started. For those driving one of these vehicles an additional immobilization feature is often added, like a hidden switch to deactivate the fuel pump. But, in the continual arms race between thieves and car owners, this strategy is easily bypassed. [Drive Science] hopefully took one step ahead though and added a decoy killswitch instead which triggers the alarm.

The decoy switch is placed near the steering column, where it would easily be noticed by a thief. Presumably, they would think that this was the reason the car wouldn’t start and attempt to flip the switch and then start the ignition. But secretly, the switch activates a hidden relay connected to the alarm system, so after a few seconds of the decoy switch activating, the alarm will go off regardless of the position of this switch. This build requires a lot of hiding spots to be effective, so a hidden method to deactivate the alarm is also included which resets the relay, and another killswitch which actually disables the fuel pump is also added to another secret location in the car.

As far as “security through obscurity” goes, a build like this goes a long way to demonstrate how this is an effective method in certain situations. All that’s generally needed for effective car theft prevention is to make your car slightly more annoying to steal than any other car on the road, and we think that [Drive Science] has accomplished that goal quite well. Security through obscurity is generally easily broken on things deployed on a much larger scale. A major European radio system was found to have several vulnerabilities recently thanks in part to the designers hoping no one would look to closely at them.

Continue reading “Decoy Killswitch Triggers Alarm Instead”