A Bicycle Is Abandonware Now? Clever Hack Rescues Dead Light

A bicycle is perhaps one of the most repairable pieces of equipment one can own — no matter what’s wrong with it, and wherever you are on the planet, you’ll be able to find somebody to fix your bike without too much trouble. Unfortunately as electric bikes become more popular, predatory manufacturers are doing everything they can to turn a bike into a closed machine, only serviceable by them.

That’s bad enough, but it’s even worse if the company happens to go under. As an example, [Fransisco] has a bike built by a company that has since gone bankrupt. He doesn’t name them, but it looks like a VanMoof to us. The bike features a light built into the front of the top tube of the frame, which if you can believe it, can only be operated by the company’s (now nonfunctional) cloud-based app.

The hack is relatively straightforward. The panel for the VanMoof electronics is removed and the works underneath are slid up the tube, leaving the connector to the front light. An off the shelf USB-C Li-Po charger and a small cell take the place of the original parts under a new 3D printed panel with a switch to run the light via a suitable resistor. If it wasn’t for the startling green color of the filament he used, you might not even know it wasn’t original.

We would advise anyone who will listen, that hardware which relies on an app and a cloud service should be avoided at all costs. We know most Hackaday readers will be on the same page as us on this one, but perhaps it’s time for a cycling manifesto to match our automotive one.

Thanks [cheetah_henry] for the tip.

Biting Off More Than I Can Chew

Earlier this year, I bought one of those K40-style laser machines that was listed at a ridiculously low price, and it arrived broken. Well, let me qualify that: the laser tube and the power supply work perfectly, but that’s about the best you can say about it.

On first power-up, it made a horrible noise, the Y-axis was jammed, the X-axis was so off-square that it was visibly apparent, and it turned out that as I fixed one of these problems after the other, that it was just the tip of the iceberg. The Y-axis was jammed because the belts were so tight that they made the motor bind. Replacing them, because they were simply too short, got the stage moving, but it didn’t engage the endstops. Fixing those revealed that the motor was stepped wrong, and flipping the pins in the connector finally got it homing in the right direction. Full disassembly and reassembly steps required at each stage here.

The X-axis just needed adjustment, but the opto on its endstop had been completely crushed by a previous failed homing, and I had to desolder and resolder in a new one. (Keep your junkbox well stocked!) With the machine working, it became obvious that the driver board was barely usable. It accelerates horribly jerkily, which makes the motors skip and stall. It had to be run artificially slowly because it couldn’t make the corners. So I put in a new motor controller board that handles Gcode and does legitimate acceleration ramps.

Movement mostly fixed, it was time to align the laser. Of course, the optical path is all messed up, they forgot the o-ring that holds the focusing lens in place, and the thing keeps powering down randomly. This turns out to be because of the aiming red laser pointer, which has a positive case, which is shorting through the single wrap of electrical tape that “insulates” it from the machine’s frame. When this shorts, the motor driver board browns out. Lovely!

Once I was finally able to start aligning the beam, I discovered that the frame is warped out of plane. The simple solution is to take it all apart again and shim it until it’s flat, but I just haven’t had the time yet. I’m not beaten, but it’s been eating up hours after hours on the weekends, and that time is scarce.

I love DIY, and I love taking a machine apart in order to understand it. Once. But I’m now on my tenth or twelfth unmounting of the motion stage, and frankly, it’s no fun any more. It would have been quicker, if maybe not cheaper, to have built this machine entirely from scratch. At least for the moment, I’ve bitten off more than I have time to chew.

Have Li-ion Batteries Gone Too Far?

The proliferation of affordable lithium batteries has made modern life convenient in a way we could only imagine in the 80s when everything was powered by squadrons of AAs, or has it? [Ian Bogost] ponders whether sticking a lithium in every new device is really the best idea.

There’s no doubt, that for some applications, lithium-based chemistries are a critically-enabling technology. NiMH-based EVs of the 1990s suffered short range and slow recharge times which made them only useful as commuter cars, but is a flashlight really better with lithium than with a replaceable cell? When household electronics are treated as disposable, and Right to Repair is only a glimmer in the eye of some legislators, a worn-out cell in a rarely-used device might destine it to the trash bin, especially for the less technically inclined.

[Bogost] decries “the misconception that rechargeables are always better,” although we wonder why his article completely fails to mention the existence of rechargeable NiMH AAs and AAAs which are loads better than their forebears in the 90s. Perhaps even more relevantly, standardized pouch and cylindrical lithium cells are available like the venerable 18650 which we know many makers prefer due to their easy-to-obtain nature. Regardless, we can certainly agree with the author that easy to source and replace batteries are few and far between in many consumer electronics these days. Perhaps new EU regulations will help?

Once you’ve selected a battery for your project, don’t forget to manage it if it’s a Li-ion cell. With great power density, comes great responsibility.

Repairing A 1955 Classic Radio

We used to say that fixing something was easier than bringing up a design for the first time. After all, the thing you are fixing, presumably, worked at one time or another. These days, that’s not always true as fixing modern gear can be quite a challenge. Watching [Ken’s] repair of an old 1955 Silvertone radio reminded us of a simpler time. You can watch the action on the video below.

If you’ve never had the pleasure of working on an AM radio, you should definitely try it. Some people would use an amplifier to find where the signal dies out. Others will inject a signal into the radio to find where it stops. A good strategy is to start at the volume control and decide if it is before or after that. Then split the apparently bad section roughly in half and test that portion—sort of a hardware binary search. Of course, your first step should probably be to verify power, but after that, the hunt is on.

Continue reading “Repairing A 1955 Classic Radio”

Dismanteled Hallicrafters radio on workbench

Shortwave Resurrection: A Sticky Switch Fix On A Hallicrafters

Shortwave radio has a charm all its own: part history, part mystery, and a whole lot of tech nostalgia. The Hallicrafters S-53A is a prime example of mid-century engineering, but when you get your hands on one, chances are it won’t be in mint condition. Which was exactly the case for this restoration project by [Ken’s Lab], where the biggest challenge wasn’t fried capacitors or burned-out tubes, but a stubborn band selector switch that refused to budge.

What made it come to this point? The answer is: time, oxidation, and old-school metal tolerances. Instead of forcing it (and risking a very bad day), [Ken]’s repair involved careful disassembly, a strategic application of lubricant, and a bit of patience. As the switch started to free up, another pleasant surprise emerged: all the tubes were original Hallicrafters stock. A rare find, and a solid reason to get this radio working without unnecessary modifications. Because some day, owning a shortwave radio could be a good decision.

Once powered up, the receiver sprang to life, picking up shortwave stations loud and clear. Hallicrafters’ legendary durability proved itself once before, in this fix that we covered last year. It’s a reminder that sometimes, the best repairs aren’t about drastic changes, but small, well-placed fixes.

What golden oldie did you manage to fix up?

Continue reading “Shortwave Resurrection: A Sticky Switch Fix On A Hallicrafters”

A stainless steel metal toaster sits on a white table. Its cord is draped artfully around to the front and the leftmost toast holding apparatus is rotated out from the front of the device like a book pulled down and out from a bookshelf.

Flat Pack Toaster Heats Up The Right To Repair

The toaster is a somewhat modest appliance that is often ignored until it stops working. Many cheap examples are not made to be easily repaired, but [Kasey Hou] designed a repairable flat pack toaster.

[Hou] originally planned to design a repairable toaster to help people more easily form an emotional attachment with the device, but found the process of disassembly for existing toasters to be so painful that she wanted to go a step further. By inviting the toaster owner into the process of assembling the appliance, [Hou] reasoned people would be less likely to throw it out as well as more confident to repair it since they’d already seen its inner workings.

Under the time constraints of the project, the final toaster has a simpler mechanism for ejecting toast than most commercial models, but still manages to get the job done. It even passed the UK Portable Appliance Test! I’m not sure if she’d read the IKEA Effect before running this project, but her results with user testing also proved that people were more comfortable working on the toaster after assembling it.

It turns out that Wikipedia couldn’t tell you who invented the toaster for a while, and if you have an expensive toaster, it might still be a pain to repair.

LCD Stackup Repair: Not For The Faint Of Heart

Coming straight to the point: [Ron Hinton] is significantly braver than we are. Or maybe he was just in a worse situation. His historic Acer K385s laptop suffered what we learned is called vinegar syndrome, which is a breakdown in the polarizers that make the LCD work. So he bit the bullet and decided to open up the LCD stack and replace what he could.

Nothing says “no user serviceable parts inside” quite like those foil-and-glue sealed packages, but that didn’t stop [Ron]. Razor blades, patience, and an eye ever watchful for the connectors that are seemingly everywhere, and absolutely critical, got the screen disassembled. Installation of the new polarizers was similarly fiddly.

In the end, it looks like the showstopper to getting a perfect result is that technology has moved on, and these older screens apparently used a phase correction layer between the polarizers, which might be difficult to source these days. (Anyone have more detail on that? We looked around and came up empty.)

This laptop may not be in the pantheon of holy-grail retrocomputers, but that’s exactly what makes it a good candidate for practicing such tricky repair work, and the result is a readable LCD screen on an otherwise broken old laptop, so that counts as a win in our book.

If you want to see an even more adventurous repair effort that ended in glorious failure, check out [Jan Mrázek]’s hack where he tries to convert a color LCD screen to monochrome, inclusive of scraping off the liquid crystals! You learn a lot by taking things apart, of course, but you learn even more by building it up from first principles. If you haven’t seen [Ben Krasnow]’s series on a completely DIY LCD screen, ITO-sputtering and all, then you’ve got some quality video time ahead of you.