Need to Hold Something? Build a Custom Vise

The only thing better than making a cool project is making a cool project that helps make more projects! Case in point, [Greg Stephens] and [Alex] wanted to colorize steel bearings for use in a Newton’s Cradle desk toy. After trying out a torch and not liking it, [Greg] and [Alex] decided to build custom aluminum vise to hold the sphere while it sits in the magnetic induction forge.

Their vise–they call it the Maker’s Vise0–isn’t just a one-off project to help make the cradle. [Alex] and [Greg] aspire to create a tool useable for a wide variety of projects. They wanted it to be oil-less and it had to be customizable. Ideally it would also have an acceptable grip strength, be easy to use, and look good on the bench.

[Greg] and [Alex] have set up a project, and their logs show a lot of progress with two finished iterations of the vise and a variety of 3D-printed and cast parts to go with. Recently they brought in a 2,000-lb. load test and tested it on their vise collection, including the two prototypes. Version one rated at 500 lbs. reasonable clamping pressure–meaning they didn’t exert themselves to max out the pressure. Version two sits at 800 lbs., still nothing like a desk vise but far stronger than a Panavise, for instance.

Their magnetic induction forge project was also a success, with the team able to quickly change the color of a steel ball. Check out a video after the break…

Continue reading “Need to Hold Something? Build a Custom Vise”

Sexiest Tiny Metal Core-XY 3D Printer

That’s a lot of qualifications, but we’re pretty sure that you can’t accuse us of hyperbole in the title: this is one of the tightest little 3D printer builds we’ve ever seen. Add in the slightly esoteric CoreXY kinematics and the thick aluminum frame, and it’s a speed demon in addition to being a looker.

[René] had built a few 3D printers before, so he had a good feel for the parameters and design tradeoffs before he embarked on the DICE project. Making a small print volume, for instance, means that the frame can be smaller and thus exponentially more rigid. This means that it’s capable of very fast movements — 833 mm/s is no joke! It also looks to make very precise little prints. What could make it even more awesome? Water-cooled stepper motors, magnetic interchangeable printheads, and in-built lighting.

The build looks amazing, and there is video documentation of the whole thing on [René]’s site, including a full bill of materials and designs. It’s certainly not the cheapest 3D printer we’ve ever seen, and the tiny build platform makes it a bad choice for a general-purpose machine, but if you need a second printer and you want one with style, the DICE looks hard to beat.

Thanks [Laimonus Mockus] for the tip!

CNC Turns Empty Cans into Action Figures

[apollocrowe] at Carbide 3D (a company that does desktop CNC machines) shared a project of his that spent years being not-quite-there, but recently got dusted off and carried past the finish line. His soda can robot action figures were originally made by gluing a paper design to aluminum from a soda can, but [apollocrowe] was never really able to cut the pieces as reliably or as accurately as he wanted and the idea got shelved. With a desktop CNC machine to take care of accurate cutting, the next issue was how to best hold down a thin piece of uneven metal during the process. His preferred solution is to stick the metal to an acrylic wasteboard with hot glue, zero high enough and cut deep enough to account for any unevenness, and afterwards release the hot glue bond with the help of some rubbing alcohol.

Assembly involves minor soldering and using a few spare resistors. A small spring (for example from a retractable pen) provides the legs with enough tension for the figure to stand by itself. The results look great, and are made entirely from a few cents worth of spare parts and recycled materials. A video of the process is embedded below, and the project page contains the design files.

Continue reading “CNC Turns Empty Cans into Action Figures”

Old Batteries Yield Thermite and Manganese

Some people collect stamps, some collect coins, some even collect barbed wire. But the aptly named [Plutonium Bunny] is an element collector, as in one who seeks a sample of as many elements on the periodic table as possible. Whatever, we don’t judge – after all, there are more than a few Hackaday readers who collect lots of silicon, right?

So what’s a collector to do when he gets to the 25th place on the periodic table? Easy – harvest manganese from alkaline batteries with a thermite reaction. There’s a surprising amount of manganese in depleted alkaline batteries, which of course are easy to come by in bulk. The chemistry of [Plutonium Bunny]’s process is pretty straightforward and easy to reproduce with common ingredients, but you’ll want to be careful with a few steps – chlorine gas is not something to trifle with. The basic idea is to solubilize and purify the manganese dioxide from the other materials in the battery cathodes, recrystallize it, and mix it with aluminum powder. The aluminum acts as the fuel, the manganese dioxide is the oxidizer, and once the satisfyingly exothermic reaction shown in the video below is over, the collector-grade elemental manganese can be chipped away from the aluminum oxide slag.

So once you’ve got a few manganese nuggets, what can you do with them? Not much really – it turns out the oxides recovered from the battery are far more useful for things like supercapacitors. But it’s still a neat trick.

Continue reading “Old Batteries Yield Thermite and Manganese”

Foundry From Scrapped Oven for Cheap, Clean Castings

Home-built foundries are a popular project, and with good reason. Being able to melt and cast metal is a powerful tool, even if it’s “only” aluminum. But the standard fossil-fuel fired foundries that most people build are not without their problems, which is where this quick and clean single-use foundry comes into play.

The typical home foundry for aluminum is basically a refractory container of some kind that can take the heat of a forced-air charcoal or coal fire. But as [Turbo Conquering Mega Eagle] points out, such fuels can lead to carbon contamination of the molten aluminum and imperfections when the metal is cast. With a junked electric range, [Turbo Conquering Mega Eagle] fabricates a foundry that avoids the issue in an incredibly dangerous way. The oven’s heating element is wrapped around an old stainless saucepan, fiberglass bats from the stove insulate the ad hoc crucible, and the range’s power cord is attached directly to the heating element. The video below shows that it does indeed melt aluminum, which is used to sand cast a fairly intricate part.

We can’t see getting more than one use out of this setup, though, so it’s only as sustainable as the number of ranges you can round up. But it’s worth keeping in mind for one-off jobs. For a more permanent installation, check out this portable propane-powered foundry. And to see what you can make with one, check out this engine breather cast from beer cans.

Continue reading “Foundry From Scrapped Oven for Cheap, Clean Castings”

Brazing Aluminum

Where do you stand on one of the eternal questions of metalwork: brazing, or welding? As your Hackaday writer, and the daughter of a blacksmith, it’s very much on the welding side here. Brazed joints can come apart too easily, which is why in the territory this is being written in at least, they are not permitted for the yearly vehicle roadworthiness test. If you’ve ever had to remove a brazed-on patch with an angle grinder, you’ll know which one you’d trust in a crisis.

What if the metal in question is aluminum? [George Graves] sends us a link to a forum discussion on the subject from a few years ago, and to a YouTube video which we’ve embedded below the break. Miracle brazing rods claim astounding toughness, but the world divides into those who favour TIG’s strength versus those who point to brazing’s penetration far between the surfaces of the metal to be joined. Having experimented with them a while back, we’ll admit that it’s true that aluminum brazing rods join broken parts impressively well. But yet again you won’t see this Hackaday writer riding a bike that wasn’t welded with the trusty TIG torch.

Take a look at the video, and see what you think. Even if it’s not a joint you’d stake your life on it’s still a technique that’s a useful addition to your workshop arsenal.

Continue reading “Brazing Aluminum”

Portable Lightweight Foundry

[Makercise] is getting ready for Maker Faire. One of the things he’d really like to do is some casting demonstrations. However, he has no desire to take his expensive and heavy electric kiln based foundry to Maker Faire. So, he made his own.

He got into metal casting during his excellent work on his Gingery lathe series. He started off by modeling his plan in Fusion 360. He’d use a 16qt cook pot turned upside down as the body for his foundry. The top would be lined with ceramic fiber insulation and the lid made out of foundry cement. He uses a Reil style burner, which he also modeled as an exercise. This design is light and even better, allows him to lift the top of foundry off, leaving the crucible completely exposed for easy removal.

All went well with the first iteration. He moved the handles from the top to the bottom of the pot and filled it with insulation. He built legs for the lid and made a nice refractory cement bowl on the bottom. However, when he fired it up the bowl completely cracked along with his crucible. The bowl from design flaw, the crucible from age.

A bit put off, but determined to continue, he moved forward in a different direction. The ceramic insulation was doing so well for the top of the foundry that he decided to get rid of the cement altogether and line the bottom with it as well. The lid, however, would be pretty bad for this, so he purchased another pot and cut the top portion of it off, giving him a steel bowl that matched the top.

The foundry fires up and has worked well through multiple pours. He made some interesting objects to hopefully sell at Makerfaire and to test the demonstrations he has planned. The final foundry weighs in at a mere 15lbs not including the fuel cylinder, which is pretty dang light. Video after the break.

Continue reading “Portable Lightweight Foundry”