A Virtual Glimpse Into The Forest

Taking a stroll through the woods in the midst of autumn is a stunning visual experience. It does, however, require one to live nearby a forest. If you are one of those who does not, [Koen Hufkens] has recently launched the Virtual Forest project — a VR experience  that takes you though a day in a deciduous forest.

First off, you don’t need a VR apparatus to view the scenery. Web-browsers and most smart phones are capable of displaying the 360 degree images. The Raspberry Pi 2-controlled Ricoh Theta S camera is enclosed in a glass lamp cover and — with the help of some PVC pipe — mounted on a standard fence post. Power is delivered ingeniously via a Cat5e cable, and a surge protector has also been included in case of lightning strikes.  Depending on when you view the website, you could be confronted with a black screen, or a kaleidoscope of color.

Continue reading “A Virtual Glimpse Into The Forest”

A Compact Star Tracking Tripod

The next giant leap for mankind is to the stars. While we are mostly earthbound — for now — that shouldn’t stop us from gazing upwards to marvel at the night sky. In saying that, if you’re an amateur astrophotographer looking to take long-exposure photos of the Milky Way and other stellar scenes, [Anthony Urbano] has devised a portable tracking setup to keep your photos on point.

When taking pictures of the night sky, the earth’s rotation will cause light trails during long exposures. Designed for ultra-portability, [Urbano’s] rig uses an Arduino UNO controlled Sanryusha P43G geared stepper motor coupled to a camera mounting plate on a small tripod. The setup isn’t designed for anything larger than a DSLR, but is still capable of taking some stellar pictures.

Continue reading “A Compact Star Tracking Tripod”

Hello 3D Printed Dolly

[Ivan] likes to take time lapse videos. Using his 3D printer and a stepper motor he fashioned a rig that allows him to control the camera moving any direction on a smooth floor.

The dolly has a tripod-compatible mounting plate and scooter wheels. An Arduino runs the thing and a cell phone battery provides power. A pot sets the speed and [Ivan] provides code for both a linear pot, which he suggests, and for a logarithmic pot, which he had on hand. You can see a video of the results below.

Continue reading “Hello 3D Printed Dolly”

Hackaday Prize Entry: A Printer For Alternative Photography

Film photography began with a mercury-silver amalgam, and ended with strips of nitrocellulose, silver iodide, and dyes. Along the way, there were some very odd chemistries going on in the world of photography, from ferric and silver salts to the prussian blue found in Cyanotypes and blueprints.

Metal salts are fun, and for his Hackaday Prize entry, [David Brown] is building a printer for these alternative photographic processes. It’s not a dark room — it’s a laser printer designed to reproduce images with weird, strange chemistries.

Cyanotypes are made by applying potassium ferricyanide and ferric ammonium citrate to some sort of medium, usually paper or cloth. This is then exposed via UV light (i.e. the sun), and whatever isn’t exposed is washed off. Instead of the sun, [David] is using a common UV laser diode to expose his photographs. he already has the mechanics of this printer designed, and he should be able to reach his goal of 750 dpi resolution and 8-bit monochrome.

Digital photography will never go away, but there will always be a few people experimenting with light sensitive chemicals. We haven’t seen many people experiment with these strange alternative photographic processes, and anything that gets these really cool prints out into the world is great news for us.

Building a Full-Spectrum Digital Camera on the Cheap

The sensor on your digital camera picks up a lot more than just the light that’s visible to the human eye. Camera manufacturers go out of their way to reduce this to just the visible spectrum in order to produce photos that look right to us. But, what if you want your camera to take photos of the full light spectrum? This is particularly useful for astrophotography, where infrared light dramatically adds to the effect.

Generally, accomplishing this is just a matter of removing the internal IR-blocking filter from your camera. However, most of us are a little squeamish about tearing into our expensive DSLRs. This was the dilemma that [Gavin] faced until a couple of years ago when he discovered the Canon EOS-M.

Now, it’s important to point out that one could do a similar conversion with just about any cheap digital camera and save themselves a lot of money (the practically give those things away now). But, as any photography enthusiast knows, lenses are just as important as the camera itself (maybe even more so).

photo-31So, if you’re interested in taking nice pictures, you’ve got to have a camera with an interchangeable lens. Of course, if you’re already into photography, you probably already have a DSLR with some lenses. This was the case for [Gavin], and so he needed a cheap digital camera that used Canon interchangeable lenses like the ones he already had. After finding the EOS-M, the teardown and IR-blocking filter removal was straightforward with just a couple of hiccups.

When [Gavin] wrote his post in 2014, the EOS-M was about $350. Now you can buy them for less than $150 used, so a conversion like this is definitely into the “cheap enough to tinker” realm. Have a Nikon camera? The Nikon 1 J3 is roughly equivalent to the original EOS-M, and is about the same price. Want to save even more money, and aren’t concerned with fancy lenses? You can do a full-spectrum camera build with a Raspberry Pi, with the added benefit of being able to adjust what light is let in.

Automating A Microscope For CNC Micrographs

[Maurice] is a photographer specializing in micrographs. These very large images of very small things are beautiful, but late last year he’s been limited by his equipment. He needed a new microscope, one designed for photography, that had a scanning stage, and ideally one that was cheap. He ended up choosing a microscope from the 80s. Did it meet all his qualifications? No, but it was good enough, and like all good tools, capable of being modified to make a better tool.

This was a Nikon microscope, and [Maurice] shoots a Canon. This, of course, meant the camera mount was incompatible with a Canon 5D MK III, but with a little bit of milling and drilling, this problem could be overcome.

That left [Maurice] with a rather large project on his hands. He had a microscope that met all his qualifications save for one: he wanted a scanning stage, or a bunch of motors and a camera controller that could scan over a specimen and shoot gigapixel images. This was easily accomplished with a few 3D printed parts, stepper motors, and a Makeblock Orion, an Arduino-based board designed for robotics that also has two stepper motor drivers.

With a microscope that could automatically scan over a specimen and snap a picture, the only thing left to build was a piece of software that automated the entire process. This software was built with Processing. While this sketch is very minimal, it does allow [Maurice] to set the step size and how many pictures to take in the X and Y axis. The result is easy automated micrographs. You can see a video of the process below.

Continue reading “Automating A Microscope For CNC Micrographs”

One Hacker’s Small Tabletop Photo Studio

We love good pictures. You know, being worth a thousand words and all. So, after our article on taking good reference photos, we were pleased to see a reader, [Steve], sharing his photography set-up.

Taking good technical photos is a whole separate art from other fields of photography like portraiture.  For example, [Steve] mentions that he uses “bullseye” composition, or, putting the thing right in the middle. The standard philosophy on this method is that it’s bad and you are bad. For technical photos, it’s perfect.

[Steve] also has some unique toys in his arsenal. Like a toy macro lens from a subscription chemistry kit. He also showed off his foldscope. Sadly, they appear to no longer be for sale, but we sometimes get by with a loupe held in front of the lens. He also uses things standard in our shop. Such as a gridded cutting mat as a backdrop and a cheap three dollar tripod with spring actuated jaws to hold his phone steady.

In the end, [Steve] mostly shows that a little thought goes a long way to producing a photo that doesn’t just show, but communicates an idea in a better way than just words can manage.