Automated Weatherproof Timelapse System with DSLR and Raspberry Pi

[madis] has been working on time lapse rigs for a while now, and has gotten to the point where he has very specific requirements to fill that can’t be done with just any hardware. Recently, he was asked to take time lapse footage of a construction site and, due to the specifics of this project, used a Raspberry Pi and a DSLR camera to take high quality time lapse photography of a construction site during very specific times.

One of his earlier rigs involved using a GoPro, but he found that while the weatherproofing built into the camera was nice, the picture quality wasn’t very good and the GoPro had a wide-angle lens that wouldn’t suit him for this project. Luckily he had a DSLR sitting around, so he was able to wire it up to a Raspberry Pi and put it all into a weatherproof case.

thumbOnce the Pi was outfitted with a 3G modem, [madis] can log in and change the camera settings from anywhere. It’s normally set up to take a picture once every fifteen minutes, but ONLY during working hours. Presumably this saves a bunch of video editing later whereas a normal timelapse camera would require cutting out a bunch of nights and weekends.

The project is very well constructed as well, and [madis] goes into great detail on his project site about how he was able to build everything and configure the software, and even goes as far as to linking to the sites that helped him figure out how to do everything. If you’ve ever wanted to build a time lapse rig, this is probably the guide to follow. It might even be a good start for building a year-long time lapse video. If you want to take it a step further and add motion to it, check out this time lapse motion rig too!

Remote Controlled Wildlife Camera with Raspberry Pi

If you are interested in local wildlife, you may want to consider this wildlife camera project (Google cache). [Arnis] has been using his to film foxes and mice. The core components of this build are a Raspberry Pi and an infrared camera module specifically made for the Pi. The system runs on a 20,000 mAh battery, which [Arnis] claims results in around 18 hours of battery life.

[Arnis] appears to be using a passive infrared (PIR) sensor to detect motion. These sensors work by detecting sudden changes in the amount of ambient infrared radiation. Mammals are good sources of infrared radiation, so the sensor would work well to detect animals in the vicinity. The Pi is also hooked up to a secondary circuit consisting of a relay, a battery, and an infrared light. When it’s dark outside, [Arnis] can enable “night mode” which will turn on the infrared light. This provides some level of night vision for recording the furry critters in low light conditions.

[Arnis] is also using a Bluetooth dongle with the Pi in order to communicate with an Android phone. Using a custom Android app, he is able to connect back to the Pi and start the camera recording script. He can also use the app to sync the time on the Pi or download an updated image from the camera to ensure it is pointed in the right direction. Be sure to check out the demo video below.

If you like these wildlife cameras, you might want to check out some older projects that serve a similar purpose. Continue reading “Remote Controlled Wildlife Camera with Raspberry Pi”

A Single Pixel Digital Camera with Arduino

[Jordan] managed to cobble together his own version of a low resolution digital camera using just a few components. The image generated is pretty low resolution and is only in grey scale, but it’s pretty impressive what can be done with some basic hardware.

The heart of the camera is the image sensor. Most consumer digital cameras have tons of tiny receptors all jammed into the sensor. This allows for a larger resolution image, capturing more detail in a smaller space. Unfortunately this also usually means a higher price tag. [Jordan’s] sensor includes just a single pixel. The sensor is really just an infrared photodiode inside of a tube. The diode is connected to an analog input pin on an Arduino. The sensor can be pointed at an object, and the Arduino can sense the brightness of that one point.

In order to compile an actual image, [Jordan] needs to obtain readings of multiple points. Most cameras do this using the large array of pixels. Since [Jordan’s] camera only has a single pixel, he has to move it around and take each reading one at a time. To accomplish this, the Arduino is hooked up to two servo motors. This allows the sensor to be aimed horizontally and vertically. The Arduino slowly scans the sensor in a grid, taking readings along the way. A Processing application then takes each reading and compiles the final image.

Since this camera compiles an image so slowly, it sometimes has a problem with varying brightness. [Jordan] noticed this issue when clouds would pass over while he was taking an image. To fix this problem, he added an ambient light sensor. The Arduino can detect the amount of overall ambient light and then adjust each reading to compensate. He says it’s not perfect but the results are still an improvement. Maybe next time he can try it in color.

CAMdrive is an Open Source Time-lapse Photography Controller

[Nightflyer] has been working on an open source project he calls CAMdrive. CAMdrive is designed to be a multi-axis controller for time-lapse photography. It currently only supports a single axis, but he’s looking for help in order to expand the functionality.

You may already be familiar with the idea of time-lapse photography. The principal is that your camera takes a photo automatically at a set interval. An example may be once per minute. This can be a good way to get see gradual changes over a long period of time. While this is interesting in itself, time-lapse videos can often be made more interesting by having the camera move slightly each time a photo is taken. CAMdrive aims to aid in this process by providing a framework for building systems that can pan, tilt, and slide all automatically.

The system is broken out into separate nodes. All nodes can communicate with each other via a communication bus. Power is also distributed to each node along the bus, making wiring easier. The entire network can be controlled via Bluetooth as long as any one of the nodes on the bus include a Bluetooth module. Each node also includes a motor controller and corresponding motor. This can either be a stepper motor or DC motor.

The system can be controlled using an Android app. [Nightflyer’s] main limitation at the moment is with the app. He doesn’t have much experience programming apps for Android and he’s looking for help to push the project forward. It seems like a promising project for those photography geeks out there. Continue reading “CAMdrive is an Open Source Time-lapse Photography Controller”

A Remote for CHDK Cameras Made Possible with Arduino

[AlxDroidDev] built himself a nice remote control box for CHDK-enabled cameras. If you haven’t heard of CHDK, it’s a pretty cool software modification for some Canon cameras. CHDK adds many new features to inexpensive cameras. In this case, [AlxDroidDev] is using a feature that allows the camera shutter to be activated via USB. CHDK can be run from the SD card, so no permanent modifications need to be made to the camera.

[AlxDroidDev’s] device runs off of an ATMega328p with Arduino. It operates from a 9V battery. The circuit contains an infrared receiver and also a Bluetooth module. This allows [AlxDroidDev] to control his camera using either method. The device interfaces to the camera using a standard USB connector and cable. It contains three LEDs, red, green, and blue. Each one indicates the status of a different function.

The Arduino uses Ken Shirrif’s IR Remote library to handle the infrared remote control functions. SoftwareSerial is used to connect to the Bluetooth module. The Arduino code has built-in functionality for both Canon and Nikon infrared remote controls. To control the camera via Bluetooth, [AlxDroidDev] built a custom Android application. The app can not only control the camera’s shutter, but it can also control the level of zoom.

Improving A Modern Instant Camera

Instant film never went away – Fujifilm has been producing instant film for decades before Polaroid ceased production. Yes, cries of a lost photographic heritage were all for naught, and you can still buy an instant camera. [Dan] picked up a Fujifilm Instax Wide camera – an instant camera that produces not-square images – and figured some electronic tinkering could vastly expand the capabilities of this camera. He took it apart and made some modifications, giving it a bulb mode for long exposures and multi-exposure capability.

[Dan] began his tinkering by figuring out how to put multiple exposures on one frame of film. The Instax Wide camera has an eject sensor, a wire for the shutter button, and a few wires leading to the motor. By adding a switch to turn off the motor and a pushbutton to bypass the ejection sensor, [Dan] can stack multiple exposures on a single frame of film.

Multiple exposures are one thing, but how about longer exposures for light painting and all those other cool things you can do with microcontrolled LEDs? Modding the camera for that is pretty easy. All you need are a few mini toggle switches. It’s just a simple matter of opening the shutter for as long as you need, painting a scene with light, and flipping a few more switches to eject the film. [Dan] is getting some pretty respectable exposures with this – somewhat impressive considering the camera’s fixed aperture.

Ephemeral Photographs Staged with Artful Inventions

[Gordon Kirkwood’s] focus as a photographer is in capturing ephemeral phenomena, that is, things that are exhilarating to see but also fleeting. In the pursuit of documenting such blips of beauty found in the natural word, he has taken on engineering the circumstance through which they occur by means of technology.

One of the amazing mechanical creations he’s constructed to aid in his photography is a large computer controlled, bubble blower. A few stepper motors work to dilate three segments of soap-soaked rope engaged at 120 degree angles to create a triangular aperture. When the aperture closes, the segments overlap slightly, covering themselves with a consistent coating of suds. When the segments stretch apart, a fan blows a current of air towards the center, pushing the sheath of fluid into ginormous glimmering orbs which he uses as the focal point in some of his photographs.


More currently, [Gordon] has been developing a body of work that involves zapping botanical subject matter with a quarter-million volts from a portable arc producing device he’s created and capturing the reaction with an ultra low-tech camera (the kind with the bellow and sheet you hide under while exposing the film). Using a method all his own, the shots recorded on large format film are claimed to turn out with even more clarity than any current digital camera in use today. [Gordon] has launched a crowd funding campaign to support a pilgrimage to the majestic island of Hawaii, where he’ll use his lightning producing apparatus on ten different specimens of tropical plant life so that he can record the outcome with his tried and proven technique. (see below an artsy shot of his lightning summoner)


Sometimes Kickstarter isn’t so much about commercialism as it is starting a dialogue with the world and beginning a personal adventure. May the journey lead to new inventions and larger, more ambitious projects! Oh yeah- the bubble blowing machine is a must-see in action. Wicked cool:

Continue reading “Ephemeral Photographs Staged with Artful Inventions”