Amazing “Connect Fore!” Robot Challenges Your Putting Practice

We’ve just come across [Bithead]’s amazing, robotically-automated mashup of miniature golf and Connect Four, which also includes an AI opponent who pulls no punches in its drive to win. Connect Fore! celebrates Scotland — the birthplace of golf, after all — and looks absolutely fantastic.

Scotty the AI opponent uses this robotic turret to make their moves in a game of Connect Fore!

The way it works is this: players take turns putting colored balls into one of seven different holes at the far end of the table. Each hole feeds to a clear tube — visible in the middle of the table — which represent each of the columns in a game of Connect Four.

Each player attempts to stack balls in such a way that they create an unbroken line of four in their color, either horizontally, vertically, or diagonally. In a one-player game, a human player faces off against “Scotty”, the computer program that chooses its moves with intelligence and fires balls from a robotic turret.

[Bithead] started this project as a learning experience, and being such a complex project, the write-up is extensive. We really recommend reading through the whole thing if you are at all interested in what goes into making such a project work.

What’s particularly interesting is all of the ways in which things nearly worked, or needed nudging or fine adjustment. One might think that reliably getting a ball to enter a hole and roll down a PVC tube wouldn’t be a particularly finicky task, but it turns out that all kinds of things can go wrong.

Even finding the right play surface was a challenge. [Bithead]’s first purchase from Amazon was a total waste: it looked bad, smelled bad, and balls didn’t roll well on it. There are high-quality artificial turfs out there, but the good stuff gets shockingly expensive, and such a small project pretty much pigeonholes one as a nuisance customer when it comes to vendors. The challenges [Bithead] overcame serve as a reminder to keep the 80/20 rule (or Pareto principle) in mind when estimating what will get a project to the finish line.

Right under the page break below is a brief video tour of the completed table, and after that, you can watch a game in action as [Bithead] faces off against Scotty the AI. Curious about the inner workings? The last video has some build details that fill in a few blanks from the write-up.

We’ve seen an automated Chess table before, but this is an entirely other, utterly fantastic level of work.
Continue reading “Amazing “Connect Fore!” Robot Challenges Your Putting Practice”

Best Ways To Make PCB Breakaway Tabs, Revealed

Most of us are familiar with the concept of producing PCBs in a panel, and snapping them apart afterwards. V-grooves that go most of the way through a PCB are one way to go about this, but a line of perforations along which to snap a tab is another. But what’s the best size and spacing of holes to use? Sparkfun’s [Nick Poole] spent some $400 on PCBs to get some solid answers by snapping each of them apart, and judging the results.

The nice thing about creating a perforation line (or “mouse bites”) is that drill hits are a very normal thing in PCB production, which makes creating this kind of breakaway tab a very straightforward and flexible method. However, it can be tricky to get results that are just right. Too sturdy, and breaking apart is a hassle. Too weak, and the board may break or twist before its time. On top of that, edges must also break cleanly. We’ve covered panelizing PCBs in this way before, but this is the first time we’ve seen someone seriously look into how to create optimal breakaway tabs.

Placing holes tangent to the board edge (as shown above) isn’t the prettiest, but keeps PCB edges free from protrusions. This is best for boards that are rail-mounted, or have tight enclosures.

Data on designing mouse bites was sparse and a bit inconsistent, so [Nick] decided to figure it out empirically and share the results. The full details are available in Building a Better Mousebite (PDF download) but the essence of the recommendations are: 0.015″ unplated holes, spaced 0.025″ apart (center-to-center), tabs a maximum of 0.118″ wide (so as to be compatible with depanelizing tools), and holes that extend into the corners of the breakaway tab to avoid sharp edges. Holes should be placed slightly differently depending on whether one wishes to optimize the cosmetic appearance versus the physical smoothness of the board edge, but those numbers are the core of the guidelines.

To fine tune, [Nick] suggests increasing the spacing between holes to add strength, or just adding additional tabs. What about thickness of PCB? [Nick] tested boards both 0.8 mm and 1.6 mm thick, and while different amounts of torque were needed to snap the boards apart, things still worked as expected regardless of PCB thickness.

When it comes down to it, the best numbers will ultimately be the ones that your process or fab house can most efficiently handle, but [Nick]’s numbers should not steer anyone wrong, and it’s fantastic to see this kind of work go into refining such a common PCB feature.

The Virtue Of Wires In The Age Of Wireless

We ran an article this week about RS-485, a noise resistant differential serial multidrop bus architecture. (Tell me where else you’re going to read articles like that!) I’ve had my fun with RS-485 in the past, and reading this piece reminded me of those days.

You see, RS-485 lets you connect a whole slew of devices up to a single bundle of Cat5 cable, and if you combine it with the Modbus protocol, you can have them work together in a network. Dedicate a couple of those Cat5 lines to power, and it’s the perfect recipe for a home, or hackerspace, small-device network — the kind of things that you, and I, would do with WiFi and an ESP8266 today.

Wired is more reliable, has fewer moving parts, and can solve the “how do I get power to these things” problem. It’s intrinsically simpler: no radios, just serial data running as voltage over wires. But nobody likes running cable, and there’s just so much more demo code out there for an ESP solution. There’s an undeniable ease of development and cross-device compatibility with WiFi. Your devices can speak directly to a computer, or to the whole Internet. And that’s been the death of wired.

Still, some part of me admires the purpose-built simplicity and the bombproof nature of the wired bus. It feels somehow retro, but maybe I’ll break out some old Cat5 and run it around the office just for old times’ sake.

Twitch And Blink Your Way Through Typing With This Facial Keyboard

For those that haven’t experienced it, the early days of parenthood are challenging, to say the least. Trying to get anything accomplished with a raging case of sleep deprivation is hard enough, but the little bundle of joy who always seems to need to be in physical contact with you makes doing things with your hands nigh impossible. What’s the new parent to do when it comes time to be gainfully employed?

Finding himself in such a boat, [Fletcher]’s solution was to build a face-activated keyboard to work around his offspring’s needs. Before you ask: no, voice recognition software wouldn’t work, at least according to the sleepy little boss who protests noisy awakenings. The solution instead was to first try OpenCV and the dlib facial recognition library to watch [Fletcher] blinking out Morse code. While that sorta-kinda worked, one’s blinkers can’t long endure such a workout, so he moved on to an easier set of gestures. Mouthing Morse code covers most of the keyboard, while a combination of eye, eyebrow, and other facial twitches and tics cover the rest, with MediaPipe’s Face Mesh doing the heavy-lifting in terms of landmark detection.

The resulting facial keyboard, aptly dubbed “CheekyKeys,” performed well enough for [Fletcher] to use for a skills test during an interview with a Big Tech Company. Imagining the interviewer on the other end watching him convulse his way through the interview was worth the price of admission, and we don’t even care if it was a put-on. Video after the break.

CheekyKeys is pretty cool, doing something with a webcam and Python that we thought would have needed a dedicated AI depth camera to accomplish. But perhaps the real hack here was how [Fletcher] taught himself Morse in fifteen minutes.

Continue reading “Twitch And Blink Your Way Through Typing With This Facial Keyboard”

Night Vision: Now In Color

We’ve all gotten used to seeing movies depict people using night vision gear where everything appears as a shade of green. In reality the infrared image is monochrome, but since the human eye is very sensitive to green, the false-color is used to help the wearer distinguish the faintest glow possible. Now researchers from the University of California, Irvine have adapted night vision with artificial intelligence to produce correctly colored images in the dark. However, there is a catch, as the method might not be as general-purpose as you’d like.

Under normal illumination, white light has many colors mixed together. When light strikes something, it absorbs some colors and reflects others. So a pure red object reflects red and absorbs other colors. While some systems work by amplifying small amounts of light, those don’t work in total darkness. For that you need night vision gear that illuminates the scene with infrared light. Scientists reasoned that different objects might also absorb different kinds of infrared light. Training a system on what colors correspond to what absorption characteristics allows the computer to reconstruct the color of an image.

The only thing we found odd is that the training was on printed pictures of faces using a four-color ink process. So it seems like pointing the same camera in a dark room would give unpredictable results. That is, unless you had a huge database of absorption profiles. There’s a good chance, too, that there is overlap. For example, yellow paint from one company might look similar to blue paint from another company in IR, while the first company’s blue looks like something else. It is hard to imagine how you could compensate for things like that.

Still, it is an interesting idea and maybe it will lead to some other interesting night vision improvements. There could be a few niche applications, too, where you can train the system for the expected environment and the paper mentions a few of these.

Of course, if you have starlight, you can just use a very sensitive camera, but you still probably won’t get color. You can also build your own night vision gear without too much trouble.

Enjoy This Animatronic Eyeball’s Smooth Moves

[Enza3D] shows off a surprisingly compact articulated animatronic eyeball that can be intuitively controlled with a Wii nunchuk controller. The design uses 3D printed parts and some tiny servos, and all of the necessary electronics can be easily purchased online. The mechanical design of the eye is very impressive, and [Enza3D] walks through several different versions of the design, the end result of which is a tidy little assembly that would fit nicely into masks, costumes, or other projects.

A Wii nunchuk is ideal for manual control of such a device, thanks to its ergonomic design and ease of interface (the nunchuk communicates over I2C, which is easily within the reach of even most modest of microcontrollers.) Of course, since driving servos is also almost trivial nowadays, it doesn’t look like working this into an automated project would pose much of a challenge.

The eyeball looks great, but if you want to try for yourself, accessing the design files and code will set you back $10 which might look attractive if an eye like this is the missing link for a project.

On the other hand, enjoying the video (embedded below) and getting ideas from [Enza3D]’s design notes will only cost you a few minutes.

Continue reading “Enjoy This Animatronic Eyeball’s Smooth Moves”

Just In Case You Want To Charge Your Neighbor’s Tesla

Tesla vehicles have a charging port that is under a cover that only opens on command from a charging station. Well, maybe not only. [IfNotPike] reports that he was able to replay the 315MHz signal using a software defined radio and pop the port open on any Tesla he happened to be near.

Apparently, opening the charging port isn’t the end of the world since there isn’t much you can do with the charging port other than charging the car. At least, that we know of. If history shows anything, it is that anything you can get to will be exploited eventually.

Continue reading “Just In Case You Want To Charge Your Neighbor’s Tesla”