From Nissan ICE Pickup To BEV With Nissan Leaf Heart

First run of the motor with battery pack still externally connected.

Last year [Jimmy] got a request from a customer ([Dave]) to help convert a 1998 Nissan Frontier pickup into an electric drive vehicle, with a crashed 2019 Nissan Leaf providing the battery and electric motor for the conversion. He has documented the months-long journey with plenty of photos, as well as a series of videos over at the [EVSwap Conversions] YouTube channel. While the idea sounds easy enough, there’s a lot more to it than swapping out the ICE with an electric motor and sticking some batteries to the bottom of the car somewhere with double-sided tape. The pickup truck got effectively stripped down  and gutted, before the 110 kW (150 HP) motor got installed using an adapter plate.

The donor Leaf’s battery pack came in at a decently sized 40 kWh, which should give the converted Nissan Frontier BEV a range of easily 100 miles. This pack was split up into two packs, which got put into a custom aluminium battery box, each mounted on one side of the driveshaft. The charging port got installed on the front of the car, next to the logo, discreetly behind a panel. The front of the car had much of the openings that were needed for the ICE’s radiator sealed up for reduced air friction, along with the new low-friction tires that got installed. Although this converted car still has a radiator, it only needs to assisting cooling the motor stack (including inverter and charger) when driving slowly or charging, making it far less demanding and thus allows for a more sleek front.

As a bonus, the car still has the manual 5-gear shift, just without a clutch, and the pickup bed can now also tilt, albeit with hydraulics (so far). Considering that it started with a decent 1998 pickup and totaled Nissan Leaf, this is among the cleanest conversions we have seen, not to mention a good use of a crashed BEV.

Thanks to [JohnU] for the tip.

Continue reading “From Nissan ICE Pickup To BEV With Nissan Leaf Heart”

A clipping of the "3D Printing & Modelling" skill tree. An arrow pointing up says "Advanced" and there are several hexagons for various skills on the page including blanks for writing in your own options and some of the more advanced skills like "Print in Nylon or ASA material"

Maker Skill Trees Help You Level Up Your Craft

Hacking and making are great fun due to their open ended nature, but being able to try anything can make the task of selecting your next project daunting. [Steph Piper] is here with her Maker Skill Trees to give you a map to leveling up your skills.

Featuring a grid of 73 hexagonal tiles per discipline, there’s plenty of inspiration for what to tackle next in your journey. The trees start with the basics at the bottom and progressively move up in difficulty as you move up the page. With over 50 trees to select from (so far), you can probably find something to help you become better at anything from 3D printing and modeling to entrepreneurship or woodworking.

Despite being spoiled for choice, if you’re disappointed there’s no tree for your particular interest (underwater basket weaving?), you can roll your own with the provided template and submit it for inclusion in the repository.

Want to get a jump on an AI Skill Tree? Try out these AI courses. Maybe you could use these to market yourself to potential employers or feel confident enough to strike out on your own?

[Thanks to Courtney for the tip!]

Continue reading “Maker Skill Trees Help You Level Up Your Craft”

A C64 SID Replacement With Built-in Games

Developer [frntc] has recently come up with a smaller and less expensive way to not only replace the SID chip in your Commodore 64 but to also make it a stereo SID! To top it off, it can also hold up to 16 games and launch them from a custom menu. The SIDKick Pico is a simple board with a Raspberry Pi Pico mounted on top. It uses a SID emulation engine based on reSID to emulate both major versions of the SID chip — both the 6581 and the 8580. Unlike many other SID replacements, the SIDKick Pico also supports mouse and paddle inputs, meaning it replaces all functionality of the original SID!

Sound can be generated in three different ways: either using PWM to create a mono audio signal that is routed out via the normal C64/C128 connectors, an external PCM5102A DAC board, or using a different PCB design that has pads for an on-board DAC and TL072 op-amp. While many Commodore purists dislike using replacement chips, the reality is that all extant SID chips were made roughly 40 years ago, and as more and more of them fail, options like the SIDKick Pico are an excellent way to keep the sound of the SID alive.

If you want to hear the SIDKick Pico in action, you can check out the samples on the linked GitHub page, or check out the video below by YouTuber Wolfgang Kierdorf of the RETRO is the New Black channel. To get your hands on a SIDKick Pico, you can follow the instructions on the GitHub page for ordering either bare PCBs or pre-assembled PCBs from either PCBWay or your board manufacturer of choice.

Continue reading “A C64 SID Replacement With Built-in Games”

BikeBeamer Adds POV Display To Bicycle Wheels

Unless you’re living in a bicycle paradise like the Netherlands, most people will choose to add some sort of illumination to their bicycle to help drivers take note that there’s something other than a car using the road. Generally, simple flashing LEDs for both the front and the rear is a pretty good start, but it doesn’t hurt to add a few more lights to the bicycle or increase their brightness. On the other hand, if you want to add some style to your bicycle lighting system then this persistence of vision (POV) display called the BikeBeamer from [locxter] might be just the thing.

The display uses four LED strips, each housed in their own 3D printed case which are installed at 90-degree angles from one another in between the spokes of a standard bicycle wheel. An ESP32 sits at the base of one of the strips and is responsible for storing the image and directing the four displays. This is a little more complex than a standard POV display as it’s also capable of keeping up with the changing rotational speeds of the bicycle wheels when in use. The design also incorporates batteries so that no wires need to route from the bike frame to the spinning wheels.

This is an ongoing project for [locxter] as well, meaning that there are some planned upgrades even to this model that should be in the pipe for the future. Improving the efficiency of the code will hopefully allow for more complex images and even animations to be displayed in the future, and there are also some plans to improve the PCB as well with all surface-mount components. There are a few other ways to upgrade your bike’s lighting as well, and we could recommend this heads-up headlight display to get started.

A persistence-of-vision business card which displays information when shaken (not stirred).

2024 Business Card Challenge: Make Them Shake Your Handiwork

Before COVID, people traditionally sealed their initial introduction to each other with a handshake. Nowadays, that activity seems kind of questionable. But you can still give them something to shake if you build this persistence of vision (POV) business card from [chaosneon] to show your credentials in blinkenlights form.

As you might have guessed, the input comes from a tilt switch. The user simply shakes the card back and forth, and the sensor detects the direction and cadence of the shake. Cleverly, the pattern plays forward-ways on the swing, and backwards on the back stroke, which just reinforces the POV effect. Don’t worry about how slow or fast to shake it, because the timing adjusts for your speed.

The first version used individual white LEDs, hand-soldered to an ATtiny2313. Now, in the updated version which you can see in the demo video after the break, [chaosneon] is using an RGB NeoPixel strip, which only needs one data wire to connect to the microcontroller. Thanks to this, [chaosneon] was able to to downsize to an ATtiny85.

Continue reading “2024 Business Card Challenge: Make Them Shake Your Handiwork”

Raspberry Pi Goes Public

We’ve heard rumors for the last few months, and now it looks like they’ve come true: the business side of Raspberry Pi, Raspberry Pi Holdings has become a publicly listed company on the London Stock Exchange.

We heard rumblings about this a while back, and our own [Jenny List] asked the question of what this means for the hobbyist and hacker projects that use their products. After all, they’ve been spending a lot of money making new silicon, and issuing stock helps them continue. Jenny worried that they’d forget that what sells their hardware is the software, but ends up concluding that they’ll probably continue doing more of the same thing, just with better funding.

Raspberry Pi CEO [Eben Upton] said basically the same when we asked him what a floatation would mean for the Raspberry Pi Foundation, which is the non-profit arm of the Raspberry Empire, and which is responsible for a lot of the educational material and outreach that they do. (Fast-forward to minute 40.) Before the share issue, the Foundation wholly owned Holdings, and received donations to fund its work. Now that there has been a floatation, it looks like the Foundation will owns 70% of Holdings, and will use this endowment to finance its educational mission.

We don’t have a crystal ball, but we suspect this changes not much at all. Raspberry Pi Holdings Ltd is doing great business by producing niche single-board computers that appeal both to the hacker and industrial markets, and the Raspberry Pi Foundation now has a more concrete source of funding to continue its educational goals. But the future will tell!

OpenSCAD Cranks Out Parametric CNC Clamps

If you’ve ever used a CNC router or mill, you’ll know how many little things need to go right before you get anything resembling acceptable results. We could (and probably should?) run a whole series of posts on selecting the correct bit for the job at hand and figuring out the appropriate feeds and speeds. But before you even get to that point, there’s something even more critical you need to do: hold the workpiece down so it doesn’t blast off into orbit when the tool touches it.

Now that might sound like an easy enough job, and for basic flat stock, it often is. But if you’ve got an oddly shaped piece of material, you’ll quickly realize how inadequate those trusty c-clamps really are. When you get to that point, it might time to check out these OpenSCAD hold down clamps from [ostat]. Thanks to its parametric nature, you can plug whatever dimensions you need into the script, and in a few seconds it will spit out an STL file for a bespoke clamp that you can print out and put to work.

Continue reading “OpenSCAD Cranks Out Parametric CNC Clamps”