Acoustic Accordion Becomes MIDI; Oh The Complexity!

Everyone knows accordions are cool — they look fly, make neat noises, and get your romantic interests all hot and bothered. What isn’t cool is being relegated to acoustics only. How are you going to play a packed stadium or lay down a crystal clear track like that? You could go out and buy an electric accordion, but even low-end models carry a hefty price tag. But, this is Hackaday, and you know we’re going to be telling you about someone who found a better way.

That better way, shown in a build by [Brendan Vavra], was to take an acoustic accordion and convert it to MIDI. The base for his build was a decent full-size acoustic accordion purchased on eBay for just $150. Overall, it was in good mechanical condition, but some of the reeds were out of tune or not working at all. Luckily, that didn’t matter, since he wouldn’t be using them anyway. Don’t be fooled in the demo video below; it sounds like he’s playing the acoustic according but notice he’s not pumping those bellows! However, the bellows isn’t useless either since it can feed data back as a MIDI input.

[Brendan’s] build plan called for an Arduino Mega to be tied to a series of photo-interrupters that would detect button pushes and fire MIDI signals. But, first he had to take the thing apart — no small task, given the complexity of the instrument. The accordion has 120 buttons, and they’re not interchangeable, which means he had to carefully keep track of them as they were disassembled.

Continue reading “Acoustic Accordion Becomes MIDI; Oh The Complexity!”

The Soda Locker Vending Machine

With the rising popularity of electronic textbooks and laptops being used for schoolwork, the ubiquitous high school locker is becoming less and less necessary. So, students are left with a private storage space that they don’t really need. Why let it go to waste when you’re an enterprising young man with budding electronics and fabrication skills?

[Mistablik] is one such high school student who decided to take advantage of his unused locker. After a “wouldn’t it be cool if…” discussion with his friends, [Mistablik] decided to use his summer break to construct a soda vending machine that fit entirely within his school locker. Quite an ambitious project for a high school student, but the result speaks for itself.

Continue reading “The Soda Locker Vending Machine”

Add Broken Tool Detection To Your CNC Mill

A tool breaking in the midst of a CNC machining operation is always a disaster. Not only do you have a broken tool (no small expense), but if the program continues to run there is a good chance it’ll end up ruining your part too. In particularly bad cases, it’s even possible to for this to damage the machine itself. However, if the breakage is detected soon enough, the program can be stopped in time to salvage the part and avoid damage to your machine.

Many new machining centers have the ability to automatically detect tool breaks, but this is a feature missing from older machines (and inexpensive modern machines). To address this issue, [Wiley Davis] came up with a process for adding broken tool detection to an older Haas mill. The physical modifications are relatively minor: he simply added a limit switch wired to the existing (but unused) M-Function port on the Haas control board. This port is used to expand the functionality of the machine, but [Wiley] didn’t need it anyway.

Continue reading “Add Broken Tool Detection To Your CNC Mill”

Open-Source Parametric CAD In Your Browser

Until recently, computer-aided design (CAD) software was really only used by engineering companies who could afford to pay thousands of dollars a year per license. The available software, while very powerful, had a very high learning curve and took a lot of training and experience to master. But, with the rise of hobbyist 3D printing, a number of much more simple CAD programs became available.

While these programs certainly helped makers get into 3D modeling, most had serious limitations. Only a few have been truly open-source, and even fewer have been both open-source and parametric. Parametric CAD allows you to create 3D models based on a series of parameters, such as defining a cube by its origin and dimensions. This is in contrast to sculpting style 3D modeling software, which is controlled much more visually. The benefit of parametric modeling is that parameters can be changed later, and the model can be updated on the fly. Features can also be defined mathematically, so that they change in relation to each other.

While still in its infancy, JS.Sketcher is seeking to fill that niche. It is 100% open-source, runs in your browser using only JavaScript, and is fully parametric (with both constraints and editable dimensions). At this time, available features are still pretty limited and simple. You can: extrude/cut, revolve, shell, and do boolean operations with solids. More advanced features aren’t available yet, but hopefully will be added in the future.

Continue reading “Open-Source Parametric CAD In Your Browser”

Off-Grid Travel — Setting Up A Solar System

When you’re living out of a vehicle, or even just traveling out of one, power quickly becomes a big concern. You need it for lights, to charge your various devices, to run your coffee maker and other appliances, and possibly even to store your food if you’ve got an electric refrigerator. You could do what many RV owners do: rely on campgrounds with electrical hookups plus a couple of car batteries to get you from one campground to the next. But, those campgrounds are pricey and often amount to glorified parking lots. Wouldn’t it be better if you had the freedom to camp anywhere, without having to worry about finding somewhere to plug in?

That’s exactly what we’re going to be covering in this article: off-grid power on the road. There are two major methods for doing this: with a portable gas generator, or with solar. Gas generators have long been the preferred method, as they provide a large amount of power reliably. However, they’re also fairly expensive, cumbersome, noisy, and obviously require that you bring along fuel. Luckily, major advances in solar technology over the past decade have made it very practical to use solar energy as your sole source of electricity on the road.

Continue reading “Off-Grid Travel — Setting Up A Solar System”

Anti-Entropy Machine Satiates M&M OCD

College engineering projects are great, because they afford budding engineers the opportunity to build interesting things without the need for financial motivation. Usually, some basic requirements are established, but students are free to get creative and build something that appeals to them personally. For our readers, mechatronics courses are ripe for these kinds of projects, as the field combines electrical engineering, mechanical engineering, and programming.

[Ethan Crane] is in just such a course, and had a final project due with only one real requirement: it had to use a PICAXE. Obviously, this gave [Ethan] quite a bit of freedom to build something unique, and what he came up with is an “Anti-Entropy Machine” designed to sort M&M candies by color. The electronics are as simple as [Ethan] could make them (a good philosophy for an engineering student to adhere to). There is an IR sensor to determine if a candy is in the hopper, an RGB sensor to determine its color, and servos to position the delivery chute based on color and operate the hopper.

Continue reading “Anti-Entropy Machine Satiates M&M OCD”

Making A Shifter Knob From Old Skateboards

Do you have a car? Does that car have a manual transmission? Do you want to beautify your shifter knob, while simultaneously gaining mad street cred, yo? Well, you’re in luck, because all of that can be done for the low, low price of a couple old skateboard decks, a lathe, and a lot of glue.

This project, from [basiltab] illustrates how you can use old skateboard decks to create really cool looking custom shifter knobs. The process starts with cutting the decks up into uniform strips, which are then glued and clamped to form small planks. Sections of the decks were alternated, to create a visually interesting pattern. The planks are then sanded so that they’re smooth and flat, and then glued up in a jig to form blocks with a threaded aluminum insert in the center. Optionally, aluminum can be used for some of the layers to add a little flair (2-part epoxy was used in place of glue for the aluminum).

After the glue has dried, the blocks can then be turned on a lathe to create the desired shape of the knob. As you can see, the results are pretty darn nifty. And, they certainly have a little more artistic credibility than the giant acrylic shifter knobs you normally find at your local auto parts store. Don’t worry, if you thought this article was about shift registers, we’ve got you covered there too.