You Wouldn’t Download A House

Shelter is one of the most basic of human needs, so it shouldn’t be a surprise that we continually come up with new ways to build homes. Most building systems are open source to an extent, and the WikiHouse project tries to update the process for the internet age. 

WikiHouse is a modular building system similar to structural insulated panels (SIPs) but designed to be made on a CNC and insulated in the shop before heading to the site. Using this system, you can get the advantages of a manufactured home, but in a more distributed manner. Plywood or oriented strand board (OSB) can be used to make up the chassis of the blocks which can then be assembled very quickly on site versus traditional wooden construction.

One of the more interesting aspects of WikiHouse is that it takes design for disassembly seriously. How many houses have parts that are still good when they’re demolished to make way for something new? In most places, the good is hauled to the dump along with the bad because it isn’t economical to separate the two. Building with end of life in mind makes it so much easier to recover those materials and not waste them. There are certainly examples of careful material recovery, but they’re few and far between.

If you’re looking for some other ways to quickly build a house from wood, checkout the PlyPad or Brikawood.

Continue reading “You Wouldn’t Download A House”

a) Schematic illustration of energy storage process of succulent plants by harnessing solar energy with a solar cell, and the solar cell converts the energy into electricity that can be store in APCSCs of succulent plants, and then utilized by multiple electrical appliances. b–d) The energy is stored in cactus under sunlight by solar cell and then power light strips of Christmas tree for decoration.

Succulents Into Supercapacitors

Researchers in Beijing have discovered a way to turn succulents into supercapacitors to help store energy. While previous research has found ways to store energy in plants, it often required implants or other modifications to the plant itself to function. These foreign components might be rejected by the plant or hamper its natural functions leading to its premature death.

This new method takes an aloe leaf, freeze dries it, heats it up, then uses the resulting components as an implant back into the aloe plant. Since it’s all aloe all the time, the plant stays happy (or at least alive) and becomes an electrolytic supercapacitor.

Using the natural electrolytes of the aloe juice, the supercapacitor can then be charged and discharged as needed. The researchers tested the concept by solar charging the capacitor and then using that to run LED lights.

This certainly proposes some interesting applications, although we think your HOA might not be a fan. We also wonder if there might be a way to use the photosynthetic process more directly to charge the plant? Maybe this could recharge a tiny robot that lands on the plants?

Digital Master Tapes Seek Deck

As a nerdy kid in the 90s, I spent a fair bit of time watching the computer-themed cartoon Reboot. During the course of making a documentary about the show, [Jacob Weldon] and [Raquel Lin] have uncovered the original digital master tapes of the show.

This is certainly exciting news for fans of the show, but there’s a bit of a wrinkle. These digital masters are all on D-1 digital cassette tapes which the studio doesn’t have a player for anymore. The dynamic duo are on the hunt for a Bosch BTS-D1 to be able to recapture some of this video for their own film while also heavily hinting to the studio that a new box set from the masters would be well-received.

As the first CGI TV series, Reboot has a special place in the evolution of entertainment, and while it was a technical marvel for its time, it was solid enough to last for four seasons and win numerous awards before meeting a cliffhanger ending. If you’re an expert in D-1 or have a deck to lend or sell, be sure to email the creators.

Feeling nostalgic for the electromechanical era? Why not check out some hidden lyrics on Digital Compact Cassettes (DCC) or encoding video to Digital Audio Tapes (DAT)?

[via Notebookcheck]

A red circuit board with four wires running from an IMU to a Pi Pico W. This is all attached to a clear plastic baton.

An Electronic Orchestra Baton

The conductor of an orchestra may look unassuming on the street, but once they step onto their podium, they are all powerful. If you’ve ever wanted to go mad with power in the comfort of your own home, try this electronic orchestra baton by [Larry Lu] and [Kathryn Zhang].

The wireless baton “peripheral” part of the system uses a Pico W and an IMU to detect the speed of conducting a 4/4 measure. That information is then transmitted to the “central” Pico W access point which plays a .wav at the speed corresponding to the conductor’s specified beats per minute (BPM). Setting the baton down will pause the visualizer and audio playback.

The “central” Pico W uses direct memory access (DMA) and SPI communication to control the audio output and VGA visualization. Since most .wav files have a sample rate of 44.1 kHz, this gave the students a reference to increase or decrease the DMA audio channel timer to control the playback.

Want some more musical hacks? Checkout this auto-glockenspiel or how the original iPod was hacked.

Continue reading “An Electronic Orchestra Baton”

An exploded view render of a red 3D printed case with a green PCB is inside with visible USB-A connectors with a mouse and keyboard graphic above each and "A" and "B" labels above USB-C connectors on the other side.

Building A Better Keyboard And Mouse Switch

Switching inputs between desktops seems like something that should be simple but can prove to be a pain in reality. [Hrvoje Cavrak] decided to take matters into his own hands and build a better keyboard and mouse switch.

DeskHop is built from two Raspberry Pi Pico boards connected via UART and separated by an Analog Devices ADuM1201 dual-channel digital isolator. Through the magic of Pico-PIO-USB these RP2040s can be both host and device. To keep things simple, the PCB is single-sided, and the BOM only has five distinct components.

Once hooked up to your Windows, Mac, or Linux device, your mouse pointer “magically” goes from one screen to the other when dragged across the screen edge. Keyboard LEDs can be reprogrammed to indicate which device is active, and the real beauty of the device is that since it’s a hardware solution, you don’t have to install any software on a computer you might not have admin access to.

If you want to see some more ideas for keyboard and mouse switching, check out this Pi KVM with ATX signaling, this USB triplexer, or this Pi KVM on a PCIe card.

A series of plates and tubes sits in a tank of water. The plates are square with what looks to be a white coating.

Desalinating Water With The Sun

Getting fresh water from salt water can be difficult to do at any kind of scale. Researchers have developed a new method of desalinating water that significantly reduces its cost. [via Electrek]

By mimicking the thermohaline circulation of the ocean, the researchers from MIT and Shanghai Jiao Tong University were able to solve one of the primary issues with desalination systems, salt fouling. Using a series of evaporator/condenser stages, the seawater is separated into freshwater and salt using heat from the sun.

Evaporating water to separate it from salt isn’t new, but the researchers took it a step further by tilting the whole contraption and introducing a series of tubes to help move the water along and create eddy currents. These currents help the denser, saltier water move off of the apparatus and down deeper into the fluid where the salt doesn’t cause an issue with the device’s operation. The device should have a relatively long lifetime since it has no moving parts and doesn’t require any electricity to operate.

The researchers believe a small, suitcase-sized device could produce water for a family for less than the cost of tap water in the US. The (paywalled) paper is available from Joule.

If you’re curious about other drinking water hacks, check out this post on Re-Imagining the Water Supply or this previous work by the same researchers.

Tesla’s Plug Moves Another Step Closer To Dominance

Charging an EV currently means making sure you find a station with the right plug. SAE International has now published what could be the end to the mishmash of standards in North America with the J3400 North American Charging Standard.

The SAE J3400TM North American Charging Standard (NACS) Electric Vehicle Coupler Technical Information Report (TIR), which just rolls off the tongue, details the standard formerly only available on Tesla vehicles. We previously talked about the avalanche of support from other automakers this year for the connector, and now that the independent SAE standard has come through, the only major holdout is Stellantis.

Among the advantages of the NACS standard over the Combined Charging System (CCS) or CHAdeMO is a smaller number of conductors given the plug’s ability to carry DC or AC over the same wires. Another benefit is the standard using 277 V which means that three separate Level 2 chargers can be placed on a single 3-phase commercial line with no additional step down required. Street parkers can also rejoice, as the standard includes provisions for lampost-based charger installations with a charge receptacle plug instead of the attached cable required by J1772 which leads to maintenance, clutter, and ADA concerns.

Now that J3400/NACS is no longer under the purview of a single company, the Federal Highway Administration has announced that it will be looking into amending the requirements for federal charger installation subsidies. Current rules require CCS plugs be part of the installation to qualify for funds from the Bipartisan Infrastructure Bill.

If you want to see how to spice up charging an EV at home, how about this charging robot or maybe try fast charging an e-bike from an electric car plug?