Hackaday Links Column Banner

Hackaday Links: January 26, 2019

The news this week was dominated by the novel coronavirus outbreak centered in Wuhan, China. Despite draconian quarantines and international travel restrictions, the infection has spread far beyond China, at least in small numbers. A few cases have been reported in the United States, but the first case reported here caught our eye for the technology being used to treat it. CNN and others tell us that the traveler from Wuhan is being treated by a robot. While it sounds futuristic, the reality is a little less sci-fi than it seems. The device being used is an InTouch Vici, a telemedicine platform that in no way qualifies as a robot. The device is basically a standard telepresence platform that has to be wheeled into the patient suite so that providers can interact with the patient remotely. True, it protects whoever is using it from exposure, but someone still has to gown up and get in with the patient. We suppose it’s a step in the right direction, but we wish the popular press would stop slapping a “robot” label on things they don’t understand.

Also in health news, did you know you’re probably not as hot as you think you are? While a glance in the mirror would probably suffice to convince most of us of that fact, there’s now research that shows human body temperature isn’t what it used to be. Using medical records from the Civil War-era to the 1930s and comparing them to readings taken in the 1970s and another group between 2007 and 2017, a team at Stanford concluded that normal human body temperature in the USA has been slowly decreasing over time. They proposed several explanations as to why the old 98.6F (37C) value is more like 97.5F (36.4C) these days, the most interesting being that general overall inflammation has decreased as sanitation and food and water purity have increased, leading the body to turn down its thermostat, so to speak. Sadly, though, if the trend holds up, our body temperature will reach absolute zero in only 111,000 years.

Wine, the not-an-emulator that lets you run Windows programs on POSIX-compliant operating systems, announced stable release 5.0 this week. A year in the making, the new version’s big features are multi-monitor support with dynamic configuration changes and support for the Vulkan spec up to version 1.1.126.

Any color that you want, as long as it’s amorphous silicon. Sono Motors, the German start-up, has blown past its goal of raising 50 million euros in 50 days to crowdfund production of its Sion solar-electric car. The car is planned to have a 255 km range on a full charge, with 34 km of that coming from the solar cells that adorn almost every bit of the exterior on the vehicle. Living where the sun doesn’t shine for a third of the year, we’re not sure how well this will pay off, but it certainly seems smarter than covering roads with solar cells.

And finally, here’s a trip down memory lane for anyone who suffered through some of the cringe-worthy depictions of technology that Hollywood came up with during the 70s, 80s, and 90s. Looking back through the clips shown in “copy complete” reminds us just how many movies started getting into the tech scene. It wasn’t just the sci-fi and techno-thrillers that subjected us to closeups of scrolling random characters and a terminal that beeped every time something changed on the screen. Even straight dramas like Presumed Innocent and rom-coms like You’ve Got Mail and whatever the hell genre Ghost was got in on the act. To be fair, some depictions were pretty decent, especially given the realities of audience familiarity with tech before it became pervasive. And in any case, it was fun to just watch and remember when movies were a lot more watchable than they are today.

Feel The Force With A Pocket Magnetometer

With the rise of affordable 3D printers, we just don’t see the projects in Tic Tac boxes that we used to. That’s kind of a shame. Not only are you upcycling existing plastic when you use one, they’re decently sized component vessels for pocket builds such as [rgco]’s portable magnetometer, especially if you can get the 100-count box. Best of all, they’re see-through!

Sure, you could get a magnetometer app for your phone to test out the strength of your Buckyballs, but this is more fun, and you can use it in more places. This build doesn’t take much — an Arduino Nano reads from a Hall effect sensor and outputs the magnetic flux density in militeslas (mT) on an OLED. Fortifying the sensor by mounting it inside the body of an old (also see-through!) ballpoint pen body is a nice touch.

In order to calibrate it, [rgco] made a solenoid by wrapping a length of PVC with magnet wire. The code for this very portable and low-cost magnetometer measures the magnetic field 2000 times in under three-tenths of a second, and outputs both the mean and the standard deviation of these measurements.

Magnetometers can ID all kinds of things from submarines to Suburbans. Here’s an ESP8266 magnetometer that opens a driveway gate when it detects the car.

Nuclear Fusion At 100: The Hidden Race For Energy Supremacy

It’s hardly a secret that nuclear fusion has had a rough time when it comes to its image in the media: the miracle power source that is always ‘just ten years away’.  Even if no self-respecting physicist would ever make such a statement, the arrival of commercial nuclear fusion power cannot come quickly enough for many. With the promise of virtually endless, clean energy with no waste, it does truly sound like something from a science-fiction story.

Meanwhile, in the world of non-fiction, generations of scientists have dedicated their careers to understanding better how plasma in a reactor behaves, how to contain it and what types of fuels would work best for a fusion reactor, especially one that has to run continuously, with a net positive energy output. In this regard, 2020 is an exciting year, with the German Wendelstein 7-X stellarator reaching its final configuration, and the Chinese HL-2M tokamak about to fire up.

Join me after the break as I look into what a century of progress in fusion research has brought us and where it will take us next.

Continue reading “Nuclear Fusion At 100: The Hidden Race For Energy Supremacy”

Inputs Of Interest: Tongues For Technology

Welcome to the first installment of Inputs of Interest. In this column, we’re going to take a look at various input devices and methods, discuss their merits, give their downsides a rundown, and pontificate about the possibilities they present for hackers. I’ll leave it open to the possibility of spotlighting one particular device (because I already have one in mind), but most often the column will focus on input concepts.

A mouth mouse can help you get your input issues licked. Via @merchusey on Unsplash

Some inputs are built for having fun. Some are ultra-specific shortcuts designed to do work. Others are assistive devices for people with low mobility. And many inputs blur the lines between these three ideas. This time on Inputs of Interest, we’re going to chew on the idea of oral inputs — those driven by the user’s tongue, teeth, or both.

Unless you’ve recently bitten it, burned it, or had it pierced, you probably don’t think much about your tongue. But the tongue is a strong, multi-muscled organ that rarely gets tired. It’s connected to the brain by a cranial nerve, and usually remains undamaged in people who are paralyzed from the neck down. This makes it a viable input-driving option for almost everyone, regardless of ability. And yet, tongues and mouths in general seem to be under-utilized as input appendages.

Ideally, any input device should be affordable and/or open source, regardless of the driving appendage. Whether the user is otherwise able-bodied or isn’t, there’s no reason the device shouldn’t be as useful and beautiful as possible.

Continue reading “Inputs Of Interest: Tongues For Technology”

Who Invented The Mouse? Are You Sure?

If you ask most people who invented the mouse, they won’t know. Those that do know, will say that Doug Englebart did. In 1964 he had a box with two wheels that worked like a modern mouse as part of his work at Stanford Research Institute. There is a famous demo video from 1968 of him showing off what looks a lot like an old Mcintosh computer. Turns out, two other people may have an earlier claim to a mouse — or, at least, a trackball. So why did you never hear about those?

The UK Mouse

Ralph Benjamin worked for Britain’s Royal Navy, developing radar tracking systems for warships. Right after World War II, Ralph was working on the Comprehensive Display System — a way for ships to monitor attacking aircraft on a grid. They used a “ball tracker.” Unlike Engelbart’s mouse, it used a metallic ball riding on rubber-coated wheels. This is more like a modern non-optical mouse, although the ball tracker had you slide your hand across the ball instead of the other way around. Sort of a trackball arrangement.

Continue reading “Who Invented The Mouse? Are You Sure?”

These Bit Twiddling Tricks Will Make Your Coworkers Hate You

In the embedded world, twiddling a few bits is expected behavior. Firmware is far enough down the stack that the author may care about the number of bits and bytes used, or needs to work with registers directly to make the machine dance. Usually these operations are confined to the typical shifting and masking but sometimes a problem calls for more exotic solutions. If you need to descend down these dark depths you invariably come across the classic Bit Twiddling Hacks collected by [Sean Eron Anderson]. Here be dragons.

Discussions of bit math are great opportunities to revisit Wikipedia’s superb illustrations

Bit Twiddling Hacks is exactly as described; a page full of snippets and suggestions for how to perform all manner of bit math in convenient or efficient ways. To our surprise upon reading the disclaimer at the top of the page, [Sean] observes that so many people have used the contents of the page that it’s effectively all been thoroughly tested. Considering how esoteric some of the snippets are we’d love to know how the darkest corners found use.

The page contains a variety of nifty tricks. Interview content like counting set bits makes an early appearance.  There’s more esoteric content like this trick for interleaving the bits in two u16’s into a single u32, or rounding up to the next power of two by casting floats. This author has only been forced to turn to Bit Twiddling Hacks on one occasion: to sign extend the output from an unfortunately designed sensor with unusual length registers.

Next time you need to perform an operation with bitmatch, check out Bit Twiddling Hacks. Have you ever needed it in production? How did you use it? We’d love to hear about it in the comments.

Car Alternators Make Great Electric Motors; Here’s How

The humble automotive alternator hides an interesting secret. Known as the part that converts power from internal combustion into the electricity needed to run everything else, they can also themselves be used as an electric motor.

The schematic of a simple automotive alternator, from US patent 3329841A filed in 1963 for Robert Bosch GmbH .
The schematic of a simple automotive alternator, from US patent 3329841A filed in 1963 for Robert Bosch GmbH.

These devices almost always take the form of a 3-phase alternator with the magnetic component supplied by an electromagnet on the rotor, and come with a rectifier and regulator pack to convert the higher AC voltage to 12V for the car electrical systems. Internally they have three connections to the stator coils which appear to be universally wired in a delta configuration, and a pair of connections to a set of brushes supplying the rotor coils through a set of slip rings. They have a surprisingly high capacity, and estimates put their capabilities as motors in the several horsepower. Best of all they are readily available second-hand and also surprisingly cheap, the Ford Focus unit shown here came from an eBay car breaker and cost only £15 (about $20).

We already hear you shouting “Why?!” at your magical internet device as you read this. Let’s jump into that.

Continue reading “Car Alternators Make Great Electric Motors; Here’s How”