Joe Grand Is Hiding Data In Plain Sight: LEDs That Look Solid But Send A Message

Thursday night was a real treat. I got to see both Joe Grand and Kitty Yeung at the HDDG meetup, each speaking about their recent work.

Joe walked us through the OpticSpy, his newest hardware product that had its genesis in some of the earliest days of data leakage. Remember those lights on old modems that would blink when data is being transmitted or received? The easiest way to design this circuit is to tie the status LEDs directly to the RX and TX lines of a serial port, but it turns out that’s broadcasting your data out to anyone with a camera. You can’t see the light blinking so fast with your eyes of course, but with the right gear you most certainly could read out the ones and zeros. Joe built an homage to that time using a BPW21R photodiode.

Transmitting data over light is something that television manufacturers have been doing for decades, too. How do they work in a room full of light sources? They filter for the carrier signal (usually 38 kHz). But what if you’re interested in finding an arbitrary signal? Joe’s bag of tricks does it without the carrier and across a large spectrum. It feels a bit like magic, but even if you know how it works, his explanation of the hardware is worth a watch!

Continue reading “Joe Grand Is Hiding Data In Plain Sight: LEDs That Look Solid But Send A Message”

Rubber Duck Debugging The Digital Way

Anyone who slings code for a living knows the feeling all too well: your code is running fine and dandy one minute, and the next minute is throwing exceptions. You’d swear on a stack of O’Reilly books that you didn’t change anything, but your program stubbornly refuses to agree. Stumped, you turn to the only one who understands you and pour your heart out to a little yellow rubber duck.

When it comes to debugging tools, this digital replacement for the duck on your desk might be even more helpful. Rubber duck decoding, where actually explaining aloud to an inanimate object how you think the code should run, really works. It’s basically a way to get you to see the mistake you made by explaining it to yourself; the duck or whatever – personally, I use a stuffed pig– is just along for the ride. [platisd] took the idea a step further and made his debugging buddy, which he dubs the “Dialectic Ball,” in the form of a Magic 8-Ball fortune teller. A 3D-printed shell has an ATtiny84, an accelerometer, and an LCD screen. To use it, you state your problem, shake it, and read the random suggestion that pops up. The list has some obvious suggestions, like adding diagnostic print statements or refactoring. Some tips are more personal, like talking to your local guru or getting a cup of coffee to get things going again. The list can be customized for your way of thinking. If nothing else, it’ll be a conversation piece on your desk.

If you’re more interested in prognostication than debugging, we have no shortage of Magic 8-Ball builds to choose from. Here’s one in a heart, one that fits in a business card, and even one that drops F-bombs.

Continue reading “Rubber Duck Debugging The Digital Way”

Coming Back To Curving Bullets

What do you do when you have time, thousands of dollars worth of magnets, and you love Mythbusters? Science. At least, science with a flair for the dramatics. The myth that a magnetic wristwatch with today’s technology can stop, or even redirect, a bullet is firmly busted. The crew at [K&J Magnetics] wanted to take their own stab at the myth and they took liberties.

Despite the results of the show, a single magnet was able to measurably alter the path of a projectile. This won’t evolve into any life-saving technology because the gun is replaced with an underpowered BB gun shooting a steel BB. The original myth assumes a firearm shooting lead at full speed. This shouldn’t come as any surprise but it does tell us how far the parameters have to be perverted to magnetically steer a bullet. The blog goes over all the necessary compromises they had to endure in order to curve a bullet magnetically and their results video can be seen below the break.

Here we talk about shooting airplane guns so they don’t get mislead after leaving the barrel, and some more fun weaponry from minds under Churchill’s discretion.

Continue reading “Coming Back To Curving Bullets”

Fail Of The Week: Never Trust A Regulator Module

[Ryan Wamsley] has spent a lot of time over the past few months working on a new project, the Ultimate LoRa backplane. This is as its name suggests designed for LoRa wireless gateways, and packs in all the features he’d like to see in a LoRa expansion for the Nano Pi Duo.

His design features a three-terminal regulator, and in the quest for a bit more power efficiency he did what no doubt many of you will have done, and gave one of those little switching regulator modules in a three-terminal footprint a go. As part of his testing he inadvertently touched the regulator, and was instantly rewarded with a puff of smoke from his Nano Pi Duo. As it turned out, the regulator was susceptible to electrical noise, and had a fault condition in which its input voltage was routed directly to its output. As a result, a component in the single board computer received way more than its fair share, and burned out.

If there is a moral to be extracted from this story, it is to never fully trust a cheap drop-in module to behave exactly as its manufacturer claims. [Ryan]’s LoRa board lives to fight another day, but the smoke could so easily have come from more components.

So that’s the Fail of The Week part of this write-up complete, but it would be incomplete without the corresponding massive win that is [Ryan]’s LoRa board itself. Make sure to take a look at it, it’s a design into which a lot of attention to detail has been put.

A Lesson In K40 Laser Repair

The K40 laser cutter has become ubiquitous in hackerspaces and well-equipped home workshops over the past few years, as a relatively inexpensive introduction to laser cutting and a machine that is readily hackable. Tokyo Hackerspace have one, but sadly their laser tube failed after relatively little use. Replacing a laser tube might be a routine component change for some readers, but it’s still worth looking at in some detail.

Their tube had failed at its output lens cooling cap, a component that is glued onto the end of the tube rather than bonded, and which had snapped off. There had been no mechanical stress upon it, but it was found  that the arrangement of their cooling system caused it to drain between uses and thus air bubbles could accumulate. The resulting cooling inefficiency caused enough thermal stress for the bond between the tube and the end piece to fail.

The in-depth analysis of what caused the failure and step-by-step description of the procedure should be of interest to any K40 owner. Little things such as ensuring that the tube is rotated to the right angle for all air bubbles to make their way out of it, or making sure that when the pump is switched off the water isn’t all pulled out of it by gravity seem obvious, but these are traps that will have caught more than one K40 owner.

We’ve covered many K40 stories over the years, but a good place to start for the novice might be this commissioning story, or even this tale of a hackerspace’s modifications to their model.

Marvel At Soviet-era Smart Display’s Tiny Size

The Soviet-era 490IP1 LED. The digit is a mere 2.5 mm in height. Pictured with the Texas Instruments TIL306. [image: industrialalchemy.org]
It’s easy to assume that older components will be less integrated and bulkier than we might otherwise expect. Then something seems ahead of its time, like the teeny-tiny 490IP1 LED which was produced in the former Soviet Union. [AnubisTTP] obtained and shared images of this tiny integrated single digit LED display in which the number measures a scant 2.5 mm tall; in production it was made easier to read with an external bubble lens magnifier clipped to the outside. The red brick the 490IP1 is pictured with is the Texas Instruments TIL306, a relatively normal sized DIP component with similar functionality.

The 490IP1 is called an intelligent LED display because the package contains a decade counter and driver circuitry for the integrated seven-segment LED digit, complete with a carry signal that meant multiple displays could be chained together. It is notable not just due to its size, but because the glass cover makes it easy to see the die inside, as well as the wire-bonded pads.

It’s always fascinating to see glimpses of the development path that display technologies took. It’s easy to take a lot of it for granted today, but back before technology was where it is now, all sorts of things were tried. Examples we’ve seen in the past include the fantastic (and enormous) Eidophor projector which worked by drawing images onto a rotating disk of oil with an electron gun. On the smaller end of things, the Sphericular display used optics and image masks to wring a compact 0-9 numerical display out of only a few lamps at the back of a box.

Japanese Fire-Fighting Dragon Rides Water Jets

If you are building a robot to fight fires, why not use the water that you are fighting fires with to propel your robot? That seems to be the idea behind the Dragon Fire Fighting robot built by [Professor Satoshi Tadokoro], and his team at Tadohoku University. Their dragon robot is raised by the same directed jets of water that are used to stop the fire.

The three-meter robot also uses these jets of water to steer, moving the dragon’s head by firing water jets at angles. I’m not sure how practical it really is, though: the jets that the robot uses to steer could do as much damage as the fire itself if it wasn’t used carefully. The idea is to attach it to the end of a ladder or crane used by firefighters, so it can explore a building on fire without anyone having to step inside.

The robot was built as part of the Tough Robotics Challenge, a program that is looking to build robots that can help in disasters. Japan is one of the most disaster-prone places on the planet, thanks to earthquakes, nuclear meltdowns, and Godzilla attacks, so the program is looking to build robots that can help out. Some of the concepts they are looking at include cyborg animals, a listening drone that can help find survivors after a disaster using a sensitive microphone array and a serpentine robot that can map pipes and underground structures.

[Via TechXplore and Qes]

 

Continue reading “Japanese Fire-Fighting Dragon Rides Water Jets”