Soon You’ll Sit Inside A Robot’s Head At Work

MIT’s Computer Science and Artificial Intelligence Lab, CSAIL, has created a process of teleoperating a Baxter humanoid robot with an Oculus Rift VR headset. This project is partially aimed towards making manufacturing jobs a hell of a lot of fun telecommutable. It could even be a way to supervise robot workers from a distance.

In a nutshell, the user controls the robot remotely in a virtual reality environment. The user does this specifically in a VR environment modeled like a control room with multiple sensor displays, making it feel like they are sitting inside the robot’s head. By using hand controllers, users can match their movements to the robot’s to complete various tasks. If you’ve seen Pacific Rim, you are probably envisioning a Jaegar right about now — minus the psychic linking.

Continue reading “Soon You’ll Sit Inside A Robot’s Head At Work”

Apple II FPGA

[Stephen Edwards] had some time one Christmas. So he took a DE2 FPGA board and using VHDL built a pretty faithful reproduction of an Apple II+ computer. He took advantage of VHDL modules for the 6502 CPU and PS/2 keyboard, and focused more on the video hardware and disk emulation.

According to [Stephen], you can think of the Apple II as a video display that happens to have a computer in it. The master clock is a multiple of the color burst frequency, and the timing was all geared around video generation. [Stephen’s] implementation mimics the timing, although using more modern FPGA-appropriate methods.

Continue reading “Apple II FPGA”

One Man’s Tale Of EMC Compliance Testing

If you turn over almost any electronic device, you should find all those compliance logos: CE, FCC, UL, TÜV, and friends. They mean that the device meets required standards set by a particular region or testing organisation, and is safe for you, the consumer.

Among those standards are those concerning EMC, or ElectroMagnetic Compatibility. These ensure that the device neither emits RF radiation such that it might interfere with anything in its surroundings, nor is it unusually susceptible to radiation from those surroundings. Achieving a pass in those tests is something of a black art, and it’s one that [Pero] has detailed his exposure to in the process of seeing a large 3-phase power supply through them. It’s a lengthy, and fascinating post.

He takes us through a basic though slightly redacted look at the device itself, before describing the testing process, and the EMC lab. These are fascinating places with expert staff who can really help, though they are extremely expensive to book time in. Since the test involves a mains power supply he describes the Line Impedance Stabilisation Network, or LISN, whose job is to safely filter away the RF component on the mains cable, and present a uniform impedance to the device.

In the end his device failed its test, and he was only able to achieve a pass with a bit of that black magic involving the RF compliance engineer’s secret weapons: copper tape and ferrite rings. [Pero] and his colleagues are going to have to redesign their shielding.

We’ve covered our visits to the EMC test lab here before.

A Converter You Won’t Have: PS/2 Mouse To Serial Mouse

When did you last buy a mouse? Did it have a little adapter in the box? There was a time when if you bought a USB mouse, in the box was also an adapter to allow it to be used with the older PS/2 interface. And if you were to go back a few more years into the past, you’d have found when you bought a mouse with a PS/2 connector fitted, it may well have come with an adapter for a 9-pin RS232 serial port. Those mice from a decade or more ago would have contained the software to recognise the interface into which they were plugged, and emulate it accordingly. It is unlikely then that you could take a modern USB-only device and an unholy chain of USB-to-PS/2-to-serial adapters, and have it work as a serial mouse. Want to run Windows 3.1 on a 386DX? You need a serial mouse.

Happily, [matze525] has come along with a solution for those of you with a need to drive an ancient PC with a serial mouse. He’s created a PS/2 to RS232 mouse converter, and it takes the form of a little PCB with an AT90S2313P microcontroller to do the translation and an RS232 level converter chip.

It might sound like a rather unexpected device to produce, but we can see it fills an important niche. In the early 1990s mice were not the reliable optical devices we have today, instead they had nasty mechanical connections inside, or if you were extremely lucky, optical encoder wheels. The supply of still-reliable RS232 mice must therefore be dwindling, and if you have a Windows 3.1 PC to keep alive then we can see the ability to use a more modern pointing device has a lot going for it.

If you have one of those machines from that era that came with proprietary interfaces, maybe you can make use of a USB to quadrature converter.

Typhoon-proof Wind Turbine

While wind energy is rapidly increasing its market share across the world, wind turbines are not able to be constructed everywhere that they might be needed. A perfect example of this is Japan, where a traditional wind turbine would get damaged by typhoons. After the Fukushima disaster, though, one Japanese engineer committed himself to building a turbine specifically for Japan that can operate just fine within hurricane-force winds. (YouTube, embedded below.)

The “typhoon turbine” as it is known works via the Magnus effect, where a spinning object directs air around it faster on one side than on the other. This turbine uses three Magnus effect-driven cylinders with a blade on each one, which allows the turbine to harvest energy no matter how high the wind speeds are. The problem with hurricanes and typhoons isn’t just the wind, but also what the wind blows around. While there is no mention of its impact resistance it certainly looks like it has been built as robustly as possible.

Hopefully this turbine is able to catch on in Japan so they can reduce their reliance on other types of energy. Wind energy has been getting incredibly popular lately, including among hikers who carry a portable wind generator, and even among people with just a few pieces of scrap material.

Continue reading “Typhoon-proof Wind Turbine”

Screwdriving

Screwdriving! It’s like wardriving but instead of discovering WiFi networks, the aim is to discover Bluetooth Low Energy (BLE)  devices of a special kind: adult toys. Yes, everything’s going to be connected, even vibrators. Welcome to the 21st century.

Security researcher [Alex Lomas] recently found that a lot of BLE-enabled adult toys are completely vulnerable to malicious attacks. In fact, they are basically wide open to anyone by design.

“Adult toys lend themselves to being great testbeds for IoT research: they’re BLE, they’re relatively cheap, they’re accessible and have companion apps for the full spectrum of testing.”

Yes… great test beds… Erm, anyway, [Alex Lomas] found that there is no PIN nor password protection, or the PIN is static and generic (0000 / 1234) on every Bluetooth adult toy analysed. Manufacturers don’t want to go through the hassle, presumably because sex toys lack displays that would enable a classic Bluetooth pairing, with random PIN and so on. While this might be a valid point, almost all electronic appliances have an “ON/OFF” button for input and some LED (or even vibration in these cases) that allow some form of output. It could be done, and it’s not like vibrators are the only minimalistic appliances out there in the IoT world.

Although BLE security is crippled by design (PDF), it is possible to add security on top of flawed protocols. The average web-browser does it all the time. The communications don’t have to be clear-text where you can literally see “Vibrate:10” flying around in packets. Encryption could be implemented on top of the BLE link between the app and the device, for instance. Understandably, security in some devices is not absolutely critical. That being said, the security bar doesn’t have to be lowered to zero — it’s not safe for work or play.

[via Arstechnica]