Hackaday Prize Entry: OrthoSense, A Smart Knee Brace For Physical Therapy

If you have knee surgery, you can probably count on some physical therapy to go with it. But one thing you might not be able to count on is getting enough attention from your therapist. This was the case with [Vignesh]’s mother, who suffers from osteoarthritis (OA). Her physiotherapist kept a busy schedule and couldn’t see her very often, leaving her to wonder at her rehabilitation progress.

[Vignesh] already had a longstanding interest in bio-engineering and wearables. His mother’s experience led him down a rabbit hole of research about the particulars of OA rehabilitation. He found that less than 35% of patients adhere to the home regimen they were given. While there are a lot of factors at play, the lack of feedback and reinforcement are key components. [Vignesh] sought to develop a simple system for patients and therapists to share information.

The fruit of this labor is Orthosense, an intelligent knee brace system that measures gait angle, joint acoustics, and joint strain.  The user puts on the brace, pairs it with a device, and goes through their therapy routine. Sensors embedded in the brace upload their data to the cloud over Bluetooth.

Joint strain is measured by a narrow strip of conductive fabric running down the length of the knee. As the user does their exercises, the fabric stretches and relaxes, changing resistances all the while. The changes are measured against a Wheatstone bridge voltage divider. The knee’s gait angle is measured with an IMU and is calculated relative to the hip angle—this gives a reference point for the data collected by the strain sensor. An electret mic and a sensitive contact mic built for body sounds picks up all the pops and squeaks emitted by the knee. Analysis of this data provides insight into the condition of the cartilage and bones that make up the joint. As you might imagine, unhealthy cartilage is noisier than healthy cartilage.

[Vignesh]’s prototype is based the tinyTILE because of the onboard IMU, ADC, and Bluetooth. Since all things Curie are being discontinued, the next version will either use something nRF52832 or a BC127 module and a la carte sensors. [Vignesh] envisions a lot for this system, and we are nodding our heads to all of it.

Cuban Embassy Attacks And The Microwave Auditory Effect

If you’ve been paying attention to the news, you may have seen a series of articles coming out about US staffers in Cuba. It seems that 21 staffers have suffered a bizarre array of injuries ranging from hearing loss to dizziness to concussion-like traumatic brain injuries. Some staffers have reported hearing incapacitating sounds in the embassy and in their hotel rooms. The reports range from clicking to grinding, humming, or even blaring sounds. One staffer described being awoken to a horrifically loud sound, only to have it disappear as soon as he moved away from his bed. When he got back into bed, the mysterious sound came back.

Cuba has denied any wrongdoing. However, the US has already started to take action – expelling two Cuban diplomats from the US in May. The question though is what exactly could have caused these injuries. The press has gone wild with theories of sonic weaponry, hidden bugs, and electronic devices, poisons, you name it. Even Julian Assange has weighed in, stating “The diversity of symptoms suggests that this is a pathogen combined with paranoia in an isolated diplomatic corps.”

So what’s going on? Bizarre accidents? Cloak and dagger gone awry? Mass hysteria among the US state department, or something else entirely? Continue reading “Cuban Embassy Attacks And The Microwave Auditory Effect”

Seek Out Scammers With Skimmer Scanner

Last week we reported on some work that Sparkfun had done in reverse engineering a type of hardware card skimmer found installed in gasoline pumps incorporating card payment hardware. The device in question was a man-in-the-middle attack, a PIC microcontroller programmed to listen to the serial communications between card reader and pump computer, and then store the result in an EEPROM.

The devices featured a Bluetooth module through which the crooks could harvest the card details remotely, and this in turn provides a handy way to identify them in the wild. If you find a Bluetooth connection at the pump bearing the right identification and with the right password, it can then be fingered as a skimmer by a simple response test. And to make that extra-easy they had written an app, which when we reported on it was available from a GitHub repository.

In a public-spirited move, they are now calling upon the hardware hacker and maker community to come together today, Monday, September 25th, and draw as much attention as possible to these devices in the wild, and with luck to get a few shut down. To that end, they have put a compiled version of the app in the Google Play Store to make it extra-easy to install on your phone, and they are asking for your help. They are asking for people to first read their tutorial linked above, then install the app and take it on the road. Then should any of you find a skimmer, please Tweet about it including your zip code and the #skimmerscanner hashtag. Perhaps someone with a bit of time on their hands might like to take such a feed of skimmer location data and map it.

It would be nice to think that this work might draw attention to the shocking lack of security in gas pumps that facilitates the skimmers, disrupt the finances of a few villains, and even result in some of them getting a free ride in a police car. We can hope, anyway.

Gasoline pump image: Michael Rivera [CC BY-SA 3.0].

The Electronics Markets Of Ho Chi Minh City, Vietnam

When we think about world-famous electronics markets in Asia, usually Shenzhen, Tokyo’s Akihabara, or Shanghai’s Beijing Road come to mind.

There’s another market that I’ve had my eye on for a few years: Nhật Tảo market in Ho Chi Minh City, Vietnam. It might not be as large or accessible as the more well-known markets, but it’s very much worth a visit if you’re in the area. I decided it was time to hop on my red motorbike (red things go faster) and give you a short tour of the central market, as well as some more hobbyist-friendly options.

Continue reading “The Electronics Markets Of Ho Chi Minh City, Vietnam”

3D Printing Aluminum With Nanoparticles

We love our 3D printers. But sometimes we really wish we could print in metal. While metal printing is still out of reach for most of us, HRL Labs announced a powdered aluminum printing process that they claim is a breakthrough because it allows printing (and welding) of high-strength aluminum alloys that previously were unprintable and unweldable.

The key is treating the metal with special zirconium-based nanoparticles. The nanoparticles act as nucleation sites that allow the aluminum to form the correct microstructure. The full paper on the process appears in Nature.

Continue reading “3D Printing Aluminum With Nanoparticles”

Push Buttons, Create Music With A MIDI Fighter

Musicians have an array of electronic tools at their disposal to help make music these days. Some of these are instruments in and of themselves, and [Wai Lun] — inspired by the likes of Choke and Shawn Wasabi — built himself a midi fighter

Midi fighters are programmable instruments where each button can be either a note, sound byte, effect, or anything else which can be triggered by a button. [Lun]’s is controlled by an ATmega32u4 running Arduino libraries — flashed to be recognized as a Leonardo — and is compatible with a number of music production programs. He opted for anodized aluminum PCBs to eliminate flex when plugging away and give the device a more refined look. Check it out in action after the break!

Continue reading “Push Buttons, Create Music With A MIDI Fighter”

A Very 2017 Take On A BBC Micro

In the early 1980s, there were a plethora of 8-bit microcomputers on the market, and the chances are that if you were interested in such things you belonged to one of the different tribes of enthusiasts for a particular manufacturer’s product. If you are British though there is likely to be one machine that will provide a common frame of reference for owners of all machines of that era: The Acorn BBC Microcomputer which was ubiquitous in the nation’s schools. This 6502-driven machine is remembered today as the progenitor and host of the first ARM processors, but at the time was notable for the huge array of built-in interfaces it contained. Its relatively high price though meant that convincing your parents to buy you one instead of a ZX Spectrum was always going to be an uphill struggle.

So, you never owned a BBC Micro, and this has scarred you for life. Never mind, all is not lost, for now you can have that Acorn experience without scouring eBay for a classic micro, by running one entirely in silicon on a myStorm FPGA board.

To be fair, running classic hardware on an FPGA is nothing new and there have been a few BBC Micros implemented in this way, not to mention an Acorn Atom. But this project builds on the previous FPGA BBC Micros by porting it entirely to Verilog and incorporating some of the bug fixes from their various forks. There are screenshots of the result running several classic games, as well as test screens and a benchmark revealing it to be a faithful reproduction of a 2MHz BBC Micro.

We covered the myStorm board when it arrived last year. We’ve also brought you another FPGA board running as a coprocessor for a real BBC micro.

Thanks [monsonite] for the tip. He also alerts us that the myStorm board’s ARM microcontroller can now be programmed from the Arduino IDE.