Turning A MIG Welder Into A Metal 3D Printer

Metal 3D printers are, by and large, many times more expensive than their FDM and resin-based brethren. It’s a shame, because there’s plenty of projects that would benefit from being able to produce more heat-resistant metal parts with additive fabrication methods. [Integza]’s rocketry projects are one such example, so he decided to explore turning a MIG welder into a 3D printer for his own nefarious purposes. (Video, embedded below.)

The build is as simple as you could possibly imagine. A plastic adapter was printed to affix a MIG welding nozzle to an existing Elegoo Neptune 2 3D printer. Unfortunately, early attempts failed quickly as the heat from the welding nozzle melted the adapter. However, with a new design that held the nozzle handle far from the hot end, the ersatz metal 3D printer was able to run for much longer.

Useful parts weren’t on the cards, however, with [Integza] facing repeated issues with the steel bed warping from the heat of the welding process. While a thicker steel base plate would help, it’s likely that warping could still happen with enough heat input so more engineering may be needed. It’s not a new concept by any means, and results are typically rough, but it’s one we’d like to see developed further regardless.

Continue reading “Turning A MIG Welder Into A Metal 3D Printer”

Emulating A Power Grid

The electric power grid, as it exists today, was designed about a century ago to accommodate large, dispersed power plants owned and controlled by the utilities themselves. At the time this seemed like a great idea, but as technology and society have progressed the power grid remains stubbornly rooted in this past. Efforts to modify it to accommodate solar and wind farms, electric cars, and other modern technology need to take great effort to work with the ancient grid setup, often requiring intricate modeling like this visual power grid emulator.

The model is known as LEGOS, the Lite Emulator of Grid Operations, and comes from researchers at RWTH Aachen University. Its goal is to simulate a modern power grid with various generation sources and loads such as homes, offices, or hospitals. It uses a DC circuit to simulate power flow, which is visualized with LEDs. The entire model is modular, so components can be added or subtracted easily to quickly show how the power flow changes as a result of modifications to the grid. There is also a robust automation layer to the entire project, allowing real-time data acquisition of the model to be gathered and analyzed using an open source cloud service called FIWARE.

In order to modernize the grid, simulations like these are needed to make sure there are no knock-on effects of adding or changing such a complex system in ways it was never intended to be changed. Researchers in Europe like the ones developing LEGOS are ahead of the curve, as smart grid technology continues to filter in to all areas of the modern electrical infrastructure. It could also find uses for modeling power grids in areas where changes to the grid can happen rapidly as a result of natural disasters.

The Other First Computer: Konrad Zuse And The Z3

Bavarian Alps, Dec. 1945:

Since 1935, Berlin engineer Konrad Zuse has spent his entire career developing a series of automatic calculators, the first of their kind in the world: the Z1, Z2, Z3, S1, S2, and Z4. He accomplished this with a motley group of engineers, technicians, and mathematicians who were operating against all odds. With all the hardships and shortages of war and the indifference of their peers, the fact that they succeeded at all is a testament to their dedication and resourcefulness. And with the end of the war, more hardships have been piling on.

Two years ago, during the Battle of Berlin, bombers completely destroyed the Zuse family home and adjacent workshops on the Methfesselstraße, where they performed research and fabrication. All of the calculators, engineering drawings, and notes were lost in the rubble, save for the new Z4 nearing completion across the canal in another workshop on Oranienstraße. In the midst of all this, Zuse married in January of this year, but was immediately plunged into another crisis when the largest Allied air raid of the war destroyed the Oranienstraße workshop in February. They managed to rescue the Z4 from the basement, and miraculously arranged for it to be shipped out of the Berlin. Zuse, his family, and colleagues followed soon thereafter. Here and there along the escape route, they managed to complete the final assembly and testing of the Z4 — even giving a demonstration to the Aerodynamics Research Institute in Göttingen.

On arrival here in the Bavarian Alps, Zuse found a ragtag collection of refugees, including Dr Werner Von Braun and a team of 100 rocket scientists from Peenemünde. While everyone here is struggling just to stay alive and find food and shelter, Zuse is further worried with keeping his invention safe from prying eyes. Tensions have risen further upon circulation of a rumor that an SS leader, after three bottles of Cognac, let slip that his troops aren’t here to protect the scientists but to kill them all if the Americans or French approach.

In the midst of all this madness, Zuse and his wife Gisela welcomed a baby boy, and have taken up residence in a Hinterstein farmhouse. Zuse spends his time working on something called a Plankalkül, explaining that it is a mathematical language to allow people to communicate with these new machines. His other hobby is making woodblocks of the local scenery, and he plans to start a company to sell his devices once the economy recovers. There is no doubt that Konrad Zuse will soon be famous and known around the world as the father of automatic computers. Continue reading “The Other First Computer: Konrad Zuse And The Z3”

3D Print An Entire PC Case

With laptops having become a commodity item and single-board computers having conquered the lower end for our community, building a PC for yourself is no longer the rite of passage that it once was; except perhaps if you are a gamer. But there is still plenty of fun to be had in selecting and assembling PC hardware, especially if as [makerunit] did, you design and 3D-print your own case.

This is no motherboard in an old pizza box, but instead a highly compact and well-designed receptacle for a reasonable-performance gaming machine with an ITX motherboard. The chassis holding all the parts sits inside a slide-on textured sleeve, and particular attention has been paid to air flow and cooling. The GPU card is a little limited by the size of the case and there’s no room at all for a conventional hard drive, so a PCIe SSD board takes that role.

We’d hazard the opinion that were this case cranked out by the likes of Apple it would be hailed as some kind of design masterpiece, such is its quality. It certainly shows that there’s so much more to building your own PC than the normal rectangular tower case.

Over the decades we’ve brought you so many PC cases, a recent-ish one that’s worth a look is this Lego Minecraft one for an Intel NUC motherboard.

Continue reading “3D Print An Entire PC Case”

Aquarium Plotter Shows Sisyphish’s Submerged Sand Stripes

Sisyphus is cursed to roll a boulder up a hill for eternity. Pet fish generally content themselves to swimming the same lap over and over in a glass tank. Perpetuity can be soothing, so long as you’re not shouldering a boulder.

[Zach Frew] wants to integrate and automate the boulder on a smaller scale and one that can benefit his aquarium full of colorful Taiwanese bee shrimp. Instead of an inert rock and a Greek, Sisyphish uses a magnet and servo motors connected to a microcontroller to draw Spirograph-style shapes in the tank’s sand.

There are a couple of gears beneath the tank to trace the geometric patterns but they’re clear of any water. One gear rotates about the center of the cylindrical tank while the other holds a magnet and adjusts the distance from the center. Pilots, and select nerds, will recognize this as rho-theta positioning. Despite the uncommon coordinate system, the circular plotter accepts G-code. We love when math gets turned into gorgeous designs, and shrimp love when those tasty microbes get shaken from their gravelly hiding places.

We adore the dry sand plotters that came before, and Sisyphus himself appeared in a LEGO format that made us question our proficiency with the blocks.

Continue reading “Aquarium Plotter Shows Sisyphish’s Submerged Sand Stripes”

Obsessively Explaining The Visual Effects In Flight Of The Navigator

[Captain Disillusion] has earned a reputation on YouTube for debunking hoaxes and spreading a healthy sense of skepticism while having some of the highest production value on the platform and pretending to be some kind of inter-dimensional superhero. You’ve likely seen him give a careful explanation of how some viral video was faked alongside a generous dose of sarcastic humor and his own impressive visual effects. VFXcool is a series on his channel that takes deep dives into movies that are historically significant in the effects industry. For this installment, [Captain Disillusion]’s “intern”, [Alan], takes over to breakdown how filmmakers brought a futuristic spaceship to life in 1986’s Flight of the Navigator.

Making a movie requires hacks upon hacks, and that goes double in the era when the technology and techniques we now take for granted were being developed even as they were being put to film. The range of topics covered here is extreme: from full-scale props to models; from robotic motion control rigs to stop motion animation; from early computer graphics to the convoluted optical compositing that was necessary before digital workflows were possible. The tools themselves may be outdated, but understanding the history and the processes allows for a deeper insight into how we accomplish these kinds of effects today. And, really, it’s just so… cool.

[Captain Disillusion]’s previous VFXcool is all about the Back to the Future trilogy, and it’s a little shorter with more information on motion control rigs. We also love seeing how people make DIY effects in their own homes. LEGO actually seems like a pretty popular option for putting together whole scenes in amateur filmmaking.

Continue reading “Obsessively Explaining The Visual Effects In Flight Of The Navigator

A High Torque 3D Printed Harmonic Drive

Actuators that are powerful, accurate, compact, and cheap are like unicorns. They don’t exist. Yet this is what [3DprintedLife] needed for a robotic camera arm, so he developed a custom 3D printed high torque strain wave gearbox to be powered by a cheap NEMA23 stepper motor.

Strain wave gears, otherwise known as harmonic drives, are not an uncommon topic here on Hackaday. The work by deforming a flexible toothed spline with a rotating elliptical part, which engages with the internal teeth of an outer spline. The outer spline has a few more teeth, causing the inner spline to rotate slowly compared to the input, achieving very high gear ratios. Usually, the flexible spline is quite long to allow it to flex at one end while still having a rigid mounting surface at the other end. [3DprintedLife] got around this by creating a separate rigid output spline, which also meshes with the flexible spline. Continue reading “A High Torque 3D Printed Harmonic Drive”