Talking Ohmmeter Also Spits Out Color Bands For You

If you’ve got a resistor and you can’t read the color bands (or they’re not present), you can always just grab a multimeter and figure out its value that way. [Giacomo Yong Cuomo] and [Sophia Lin] have built an altogether different kind of ohmmeter, that can actually spit out color values for you, and even read the resistance aloud. It’s all a part of their final project for their ECE 4760 class.

The build is based around a Raspberry Pi Pico. It determines the value of a resistor by placing it in a resistor divider, with the other reference resistor having a value of 10 kΩ. The resistor under test is connected between the reference resistor and ground, while the other leg of the reference resistor is connected to 3.3 V. The node between the two resistors is connected to the Pi Pico’s analog-to-digital converter pin. This allows the Pico to determine the voltage at this point, and thus calculate the test resistor’s value based on the reference resistor’s value and the voltages involved.

A large fake resistor provides user feedback. It’s filled with addressable LEDs, which light up the appropriate color bands depending on the test resistor’s value. It’s capable of displaying both 3-band, 4-band, and 5-band color configurations. While six-band resistors do exist, the extra band is typically used for denoting temperature coefficients which can’t readily be determined by this simple test. It can also play audio files to announce the resistance value over a speaker.

It’s a neat project that surely taught the duo many useful skills for working with microcontrollers. Plus, it’s kinda fun — we love the big glowing resistor. We’ve featured some other fancy resistors before, too!

Continue reading “Talking Ohmmeter Also Spits Out Color Bands For You”

Spice Up Your Earrings With Microelectronics

We’ve covered [mitxela] in the past and if you know him, you’ll likely know him for putting the micro in microelectronics. This year, he’s at it again with his LED Industrial Piercing.

A T-shaped flexible PCB that is smaller than an index finger
This tiny PCB is really pushing the limits of fabrication

Inspired by the absolutely tiny 0402 LEDs and industrial piercings, [mitxela] started thinking of a way to construct the 5cm long device. He found some normal LED earrings to steal the battery compartment from. Then, with a tick needle and some more steel, he created a new industrial earring with some holes.

Of course, no [mitxela] project is complete without comically tiny microsoldering and this project makes the VQFN ATTiny he used look large. He puts his PCB suppliers to the test with a merely 1mm wide flex PCB for the LEDs to be mounted on. Finally, he combines the flex PCB, the earring and some epoxy to create yet another piece of LED jewelry.

Video after the break.
Continue reading “Spice Up Your Earrings With Microelectronics”

This Week In Security: Terrapin, Seized Unseized, And Autospill

There’s a new SSH vulnerability, Terrapin (pdf paper), and it’s got the potential to be nasty — but only in an extremely limited circumstance. To understand the problem, we have to understand what SSH is designed to do. It replaces telnet as a tool to get a command line shell on a remote computer. Telnet send all that text in the clear, but SSH wraps it all inside a public-key encrypted tunnel. It was designed to safely negotiate an unfriendly network, which is why SSH clients are so explicit about accepting new keys, and alerting when a key has changed.

SSH uses a sequence counter to detect Man-in-the-Middle (MitM) shenanigans like packet deletion, replay, or reordering. That sequence isn’t actually included in the packet, but is used as part of the Message Authentication Check (MAC) of several encryption modes. This means that if a packet is removed from the encrypted tunnel, the MAC fails on the rest of the packets, triggering a complete connection reset. This sequence actually starts at zero, with the first unencrypted packet sent after the version banners are exchanged. In theory, this means that an attacker fiddling with packets in the pre-encryption phase will invalidate the entire connection as well. There’s just one problem.

The innovation from the Terrapin researchers is that an attacker with MitM access to the connection can insert a number of benign messages in the pre-encryption phase, and then silently drop the first number of messages in the encrypted phase. Just a little TCP sequence rewriting for any messages between, and neither the server nor client can detect the deception. It’s a really interesting trick — but what can we do with it?

For most SSH implementations, not much. The 9.6 release of OpenSSH addresses the bug, calling it cryptographically novel, but noting that the actual impact is limited to disabling some of the timing obfuscation features added to release 9.5.

Continue reading “This Week In Security: Terrapin, Seized Unseized, And Autospill”

Displays We Love Hacking: SPI And I2C

I’ve talked about HD44780 displays before – they’ve been a mainstay of microcontroller projects for literal decades. In the modern hobbyist world, there’s an elephant in the room – the sheer variety of I2C and SPI displays you can buy. They’re all so different, some are LCD and some are OLED, some have a touchscreen layer and some don’t, some come on breakouts and some are a bare panel. No matter which one you pick, there are things you deserve to know.

These displays are exceptionally microcontroller-friendly, they require hardly any GPIOs, or none extra if you already use I2C. They’re also unbelievably cheap, and so tiny that you can comfortably add one even if you’re hurting for space. Sure, they require more RAM and a more sophisticated software library than HD44780, but with modern microcontrollers, this is no problem at all. As a result, you will see them in almost every project under the sun.

What do you need for those? What are the requirements to operate one? What kind of tricks can you use with them? Let’s go through the main aspects.

Continue reading “Displays We Love Hacking: SPI And I2C”

FLOSS Weekly Episode 762: Spilling The Tea

Editor’s Note: We’re excited to announce that Hackaday is the new home of FLOSS Weekly, a long-running podcast about free, libre, and open-source software! The TWiT network hosted the podcast for an incredible seventeen years, but due to some changes on their end, they recently had to wind things down. They were gracious enough to let us pick up the torch, with Jonathan Bennett now taking over hosting duties.

Tune in every Wednesday for a new episode, featuring interviews with developers and project leaders, coverage of the free/libre software you use everyday (maybe without even knowing it), and the latest Open Source news.


This week Jonathan Bennett and Simon Phipps talk with Neal Gompa of Fedora, CentOS, openSUSE and more. The conversation starts off with asking Neal how he went from working on a minor project 11 years ago, to being the lead of KDE on Fedora. How does a company properly sponsor Open Source development? Neal speaks from his experience at Red Hat and other places, to give some really interesting answers.

The crew move on to what happened at Red Hat with CentOS, and why just maybe it was a good thing. Is the age of a company a good indicator of how they will treat Open Source? Is CentOS Stream the best thing to happen to Red Hat Enterprise Linux? What was it like to be at Red Hat during that time? How does a company manage the tension between sales and engineering? We cover this and more!

Continue reading “FLOSS Weekly Episode 762: Spilling The Tea”

Arduino Auto-Glockenspiel Looks Proper In Copper

What is it about solenoids that makes people want to make music with them? Whatever it is, we hope that solenoids never stop inspiring people to make instruments like [CamsLab]’s copper pipe auto-glockenspiel.

At first, [CamsLab] thought of striking glasses of water, but didn’t like the temporary vibe of a setup like that. They also considered striking piano keys, but thought better of it when considering the extra clicking sound that the solenoids would make, plus it seemed needlessly complicated to execute. So [CamsLab] settled on copper pipes.

That in itself was a challenge as [CamsLab] had to figure out just the right lengths to cut each pipe in order to produce the desired pitch. Fortunately, they started with a modest 15-pipe glockenspiel as a proof of concept. However, the most challenging aspect of this project was figuring out how to mount the pipes so that they are close enough to the solenoids but not too close, and weren’t going to move over time. [CamsLab] settled on fishing line to suspend them with a 3D-printed frame mounted on extruded aluminium. The end result looks and sounds great, as you can hear in the video after the break.

Of course, there’s more than one way to auto-glockenspiel. You could always use servos.

Continue reading “Arduino Auto-Glockenspiel Looks Proper In Copper”

Could North Korea’s New Satellite Have Spied On Guam So Easily?

Earlier this week, another nation joined the still relatively exclusive club of those which possess a satellite launch capability. North Korea launched their Malligyong-1 spy satellite, and though it has naturally inflamed the complex web of political and military tensions surrounding the Korean peninsula, it still represents something of a technical achievement for the isolated Communist state. The official North Korean news coverage gleefully reported with much Cold War style rhetoric, that Kim Jong-Un had visited the launch control centre the next day and viewed intelligence photographs of an American base in Guam. Could the satellite have delivered in such a short time? [SatTrackCam Leiden] has an interesting analysis. Continue reading “Could North Korea’s New Satellite Have Spied On Guam So Easily?”