Keeping Thermal Plants Cool Without Breaking The Cooling Water Budget

Steam generators in thermal (steam-cycle) power plants require a constant influx of cool water to maximize the transfer of thermal energy. How this water is cooled again in the condensor after much of the steam’s thermal energy has been spent in the steam turbines or heat exchangers is a very important consideration in the design and construction of these plants. The most obvious and straightforward system is direct “once-through” cooling, where the water is drawn straight from a nearby river or other body of water and released after passing through the condenser. This type of system is by far the cheapest, but is also impacted by both the seasons and environmental considerations.

Where cool surface water is less abundantly available, evaporative cooling in a recirculating system such as with spray ponds and cooling towers is a good alternative. Although slightly more costly, a big benefit of these is that they require far less water and have much more control over the intake water temperature, which can raise plant efficiency. Finally, dry cooling is essentially a closed-loop system, which is exceedingly useful in areas where water is scarce. This latter type of cooling is what allows thermal plants to operate even in desert regions.

As the global climate changes – with more extreme weather events – picking the right cooling solution is more important than ever, and has us looking at retrofitting existing thermal plants with more efficient solutions. If you were ever curious how power plants keep the cool side cool, read on!

Continue reading “Keeping Thermal Plants Cool Without Breaking The Cooling Water Budget”

Listening In On A Deep-Space Satellite As It Returns Home

We’ve covered dozens of projects about getting images of Earth’s weather straight from the source. It’s not too much of a trick to download images straight from our constellation of weather satellites, but what about space weather? We’ve got satellites for that too, of course, but to get a good look at the Sun, they’re out of reach of most homebrew ground stations.

That’s about to change, though, as STEREO-A returns to our neighborhood after a 17-year absence, making citizen science a reasonable proposition. The STEREO mission — Solar Terrestrial Relations Observatory — was launched in 2006 with a pair of satellites in heliocentric orbits. STEREO-B was lost in 2014 due to a navigational glitch, but STEREO-A has spent a lot of the intervening years watching the backside of the Sun relative to the Earth. As [Scott Tilley] explains, the satellite is now approaching inferior conjunction, where it will pass between the Earth and the Sun.

This close pass makes STEREO-A’s X-band deep-space beacon readily available to hobbyist-scale equipment, like [Scott]’s 66-cm dish antenna. The dish is mounted on an alt-az telescope mount for tracking, and sports a host of gear at the focus, like LNAs, filters, mixers, and an Ettus B200 SDR. It’s not a cheap setup, but compared to what’s usually needed to listen to STEREO-A, it’s a bargain. The process of demodulating and decoding the signals was a bit more involved, though, requiring not only SatDump and some custom code but also a lot of patience. The images are worth the wait, though; [Scott] shares some amazing shots of our increasingly active Sun as well as animations of recent sunspot activity.

If you’re interested in getting in on the STEREO-A action, you’d better get hopping — the satellite will only be in the neighborhood for a few more months before heading off for another pass around the back of the Sun.

Recreating The Golden Era Of Cable TV

Fewer and fewer people have cable TV subscriptions these days, due to a combination of poor business practices by cable companies and the availability of alternatives to cable such as various streaming platforms. But before the rise of the Internet that enabled these alternatives, there was a short period of time where there were higher-quality channels, not too many commercials, a possibly rose-tinted sense of wonder, and where MTV actually played music. [Irish Craic Party] created this vintage cable TV network to capture this era of television history.

The hardware for this build is a Raspberry Pi driving an LCD display recovered from an old iPad. There’s a custom TV tuner which handles changing the channels and interfaces with an Apple Remote. Audio is sent through old computer speakers, and the case is built from 3D printed parts and some leftover walnut plywood to give it an era-appropriate 80s or early 90s feel. We’ve seen other builds like this before, but where this one really sets itself apart is in the software that handles the (television) programming.

[Irish Craic Party] has gone to great lengths here to recreate the feel of cable TV from decades ago. It has recreations of real channels like HBO, Nickelodeon, and FX including station-appropriate bumpers and commercials. It’s also synchronized to the clock so shows start on the half- or quarter-hour. Cartoons play on Saturday morning, and Nickelodeon switches to Nick-at-Nite in the evenings. There are even channels that switch to playing Christmas movies at the appropriate times, complete with Christmas-themed commercials.

The build even hosts a preview channel, one of the more challenging parts of the build. It continually scrolls through the channels and shows what’s currently playing and what will be showing shortly, complete with a commercial block at the top. For those who were around in the 90s it’s almost a perfect recreation of the experience of watching TV back then. It can even switch to a video game input when tuned to channel 3. There’s almost too much to go into in a short write-up so be sure to check the video after the break.

Thanks to [PCrozier] for the tip!

Continue reading “Recreating The Golden Era Of Cable TV”

Horror Instrument Is Truly Astounding To Listen To

Truly new musical instruments don’t come along every day; much of the low hanging fruit has already been taken. [Simon the Magpie] has been working on something that’s just a little innovative, and built what he refers to as an “Incredible Horror Instrument.” It’s all about feedback.

The build started with the Suzuki Andes 25F, a so-called “keyboard recorder.” It has the appearance of a melodion but produces flute-like sounds. [Simon]’s idea was to combine the breath-powered instrument with a talk box. If you’re unfamiliar, a talk box is designed for playing amplified guitar sounds through a tube that is placed in a player’s mouth so they can “shape” the guitar sound with their mouth.

In this role, though, the talk box’s input is hooked up to a microphone which captures the output of the Andes 25F. It then plays this back through a tube connected to the breath input of the Andes 25F. [Simon] thus created a feedback look that can effectively be “played” via the keyboard on the Andes 25F.

The audible results are eerie and haunting, and seem more than fitting for even a well-budgeted horror film. [Simon] also demonstrates some neat possibilities when combining the setup with a further feedback loop that feeds in other tones.

We’ve covered [Simon’s] work before; it’s often noisy and always entertaining. Video after the break.

Continue reading “Horror Instrument Is Truly Astounding To Listen To”

PicoDebugger Makes Development Easier

Debugging a Raspberry Pi Pico is straightforward enough; it simply involves hooking up something up to the USB and SWD pins. [Mark Stevens] whipped up the PicoDebugger to make this job easier than ever before.

The Raspberry Pi Foundation developed the Picoprobe system to allow a RP2040 to act as a USB to SWD and UART bridge for debugging another Pico or RP2040. The problem is that hooking it up time and time again can be fussy and frustrating.

To get around this, [Mark] whipped up the PicoDebugger board, which directly connects most of the important pins for you. Drop a Pico into the “Target” slot, and you can hook up the PicoDebugger to its UART lines with the flick of a DIP switch. The SWD pins can then also be connected via jumpers if so desired.  It also features a 2×20-pin header to allow the target to be wired into other hardware as necessary.

It’s a neat project, and it certainly beats running a bird’s nest of jumper wires every time you want to debug a Pico project. Simply dropping a board in is much more desirable.

We’ve seen some other neat debug tools over the years, too. If you’ve got your own development productivity hacks in the works, don’t hesitate to let us know!

AC-DC Converter Is Reliable, Safe, And Efficient

When first starting an electronics project, it’s not uncommon to dive right in to getting the core parts of the project working. Breadboarding the project usually involves working with a benchtop power supply of some sort, but when it comes to finalizing the project the actual power supply is often glossed over. It’s not a glamorous part of a project or the part most of us want to be working with, but it’s critical to making sure projects don’t turn up with mysterious issues in the future. We can look to some others’ work to simplify this part of our projects, though, like this power supply from [hesam.moshiri].

The power supply is designed around a switch-mode topology known as a flyback converter. Flyback converters work by storing electrical energy in the magnetic field of a transformer when it is switched on, and then delivering that energy to the circuit when it is switched off. By manipulating the switching frequency and turns ratios of the transformer, the circuit can have an arbitrary output voltage. In this case, it is designed to take 220V AC and convert it to 8V DC. It uses a simplified controller chip to decrease complexity and parts count, maintains galvanic isolation for safety, and is built to be as stable as possible within its 24W power limitation to eliminate any potential issues downstream.

For anyone trying to track down electrical gremlins in a project, it’s not a bad idea to take a long look at the power supply first. Any noise or unwanted behavior here is likely to cause effects especially in projects involving sensors, ADC or DAC, or other low-voltage or sensitive components. The schematic and bill of materials are available for this one as well, so anyone’s next project could use this and even make slight adjustments to change the output voltage if needed. And, if this is your first introduction to switched-mode power supplies, check out this in-depth look at the similar buck converter circuit to better understand what’s going on behind the scenes on these devices.

Continue reading “AC-DC Converter Is Reliable, Safe, And Efficient”

Building A Digital Compass With An Arduino

The magnetic compass has been a crucial navigational tool for around a thousand years or so, perhaps longer. While classical versions still work perfectly well, you can now get digital magnetometers that work in much the same way. [mircemk] decided to whip up a digital compass to demonstrate the value of these parts.

The build uses a HMC5883L magnetometer. While this can detect magnetic fields in three axes, just one is necessary for building a device that operates akin to a traditional compass. The output of the device is read by an Arduino Nano, which is hooked up to a string of WS2812B LEDs and a small OLED display. The LEDs display the bearing of magnetic north, while the OLED screen shows the current angle between the compass’s arrow and magnetic north.

It’s a tidy build that would be a great educational resource for teaching both electronics and navigational skills. We’ve seen similar projects before, like the hilarious Pizza Compass. Video after the break.

Continue reading “Building A Digital Compass With An Arduino”