Lithium-Ion Battery Circuitry Is Simple

By now, we’ve gone through LiIon handling basics and mechanics. When it comes to designing your circuit around a LiIon battery, I believe you could benefit from a cookbook with direct suggestions, too. Here, I’d like to give you a collection of LiIon recipes that worked well for me over the years.

I will be talking about single-series (1sXp) cell configurations, for a simple reason – multiple-series configurations are not something I consider myself as having worked extensively with. The single-series configurations alone will result in a fairly extensive writeup, but for those savvy in LiIon handling, I invite you to share your tips, tricks and observations in the comment section – last time, we had a fair few interesting points brought up!

The Friendly Neighborhood Charger

There’s a whole bunch of ways to charge the cells you’ve just added to your device – a wide variety of charger ICs and other solutions are at your disposal. I’d like to focus on one specific module that I believe it’s important you know more about.

You likely have seen the blue TP4056 boards around – they’re cheap and you’re one Aliexpress order away from owning a bunch, with a dozen boards going for only a few bucks. The TP4056 is a LiIon charger IC able to top up your cells at rate of up to 1 A. Many TP4056 boards have a protection circuit built in, which means that such a board can protect your LiIon cell from the external world, too. This board itself can be treated as a module; for over half a decade now, the PCB footprint has stayed the same, to the point where you can add a TP4056 board footprint onto your own PCBs if you need LiIon charging and protection. I do that a lot – it’s way easier, and even cheaper, than soldering the TP4056 and all its support components. Here’s a KiCad footprint if you’d like to do that too.

Continue reading “Lithium-Ion Battery Circuitry Is Simple”

Thank Magnesium For Water-Activated Batteries

Most of the batteries we use these days, whether rechargeable or not, are generally self-contained affairs. They come in a sealed package, with the anode, cathode, and electrolyte all wrapped up inside a stout plastic or metal casing. All the reactive chemicals stay inside.

However, a certain class of magnesium batteries are manufactured in a dry, unreactive state. To switch these batteries on, all you need to do is add water! Let’s take a look at these useful devices, and explore some of their applications.

Continue reading “Thank Magnesium For Water-Activated Batteries”

Lithium-Ion Batteries Are Easy To Find

In the first article, I’ve given you an overview of Lithium-Ion batteries and cells as building blocks for our projects, and described how hackers should treat their Lithium-Ion cells. But what if you don’t have any LiIon cells yet? Where do you get LiIon cells for your project?

Taking laptop batteries apart,  whether the regular 18650 or the modern pouch cell-based ones, remains a good avenue – many hackers take this road and the topic is extensively covered by a number of people. However, a 18650 cell might not fit your project size-wise, and thin batteries haven’t quite flooded the market yet. Let’s see what your options are beyond laptops. Continue reading “Lithium-Ion Batteries Are Easy To Find”

Aluminium-Sulphur Batteries For Local Grid Storage?

Lithium-Sulphur batteries have been on the cusp of commercial availability for a little while now, but nothing much has hit the shelves as of yet. There are still issues with lifetime due to cell degradation, and news about developments seems to be drying up a little. Not to worry, because MIT have come along with a new battery technology using some of the most available and cheap materials found on this planet of ours. The Aluminium-Sulphur battery developed has very promising characteristics for use with static and automotive applications, specifically its scalability and its incredible charge/discharge performance.

The cell is based upon electrodes constructed from aluminium metal and sulphur, with a electrolyte of molten catenated chloro-aluminate salts. With an operating temperature of around 100 degrees Celsius, you’re not going to want this in a mobile phone anytime soon, but that’s not the goal. The goal is the smoothing out of renewable energy sources, and localised electricity grid balancing. A major use case would be the mass charging of battery electric vehicles. As the number of charge points increases at any given location, so does the peak current needed from the grid. Aluminium-Sulphur batteries are touted to offer the solution to ease this, with their high peak discharge current capability enabling a much higher peak power delivery at the point of use.
Continue reading “Aluminium-Sulphur Batteries For Local Grid Storage?”

Hackaday Prize 2022: A Backup Battery Pack

These days, we’re all running around toting smartphones and laptops that could always use a bit more charge. Portable battery packs have become popular, and [Anuradha] has designed one that packs plenty of juice to keep everything humming.

The pack is designed to be charged via solar panels, at 18 V and up to 5 A of current. It’s intended to work with a Maximum Power Point Tracking module to ensure the maximum energy is gained from the sunshine available. For storage, the pack relies on 75 individual 18650 lithium cells, arranged with 3 cells in series, each with 25 in parallel (3s25p). They’re spot welded together for strength and good conductivity. Nominally, the output voltage is on the order of 10-12 V. The included battery management system (BMS) will allow an output current up to 100 A, and the pack can be used with an AC inverter to power regular home appliances.

Overall, it’s a tidy pack that’s more than capable of keeping a few devices charged up for days at a time. If you’re building something similar yourself, though, just be sure to package it well and keep it protected. So many lithium batteries can quickly turn fiery if something goes wrong, so store and use it appropriately! Fear not, however – we’ve got a guide on how to do just that.

Water Monitor Measures The Cost Of Your Shower Thinking Time

The shower is one of the top thinking places for many of us, but can get a bit out of hand with water wastage and utility bills if you go down a deep rabbit hole. To be more mindful of his water usage in the shower, [GreatScott!] created a power sipping water monitor that lives there.

The device is built around a cheap 1/2″ brass water flow rate sensor connected to his shower hose, which outputs pulses as a small wheel passes an internal hall effect sensor. The datasheet didn’t contain any spec for pulses/volume, so [GreatScott!] had to experimentally determine this by filling a one-liter container with water and counting the pulses. He found that the pulse count per liter was dependent on the flow rate, so he narrowed down the variables and just determined the average count at his shower’s pressure and flow rate.

The sensor is connected to a battery-powered ESP8266 housed inside a sealed 3D-printed enclosure in the shower. To reduce power usage to a minimum, a flow switch was added in series with the flow meter, which only switches on the ESP8266 when water starts flowing. A latching circuit keeps the ESP powered after the water stops, giving it enough time to transmit the data before shutting down. This type of circuit is very handy for any battery-powered project connected to an external switch or sensor.

It is programmed with ESPHome and outputs the data to a local Home Assistant server, so no data is saved on someone else’s server.

Continue reading “Water Monitor Measures The Cost Of Your Shower Thinking Time”

Building A Spot Welder From 500 Junk Capacitors

[Kasyan TV] over on YouTube was given a pile of spare parts in reasonably large quantities, some of which were useful and allocated to specific projects, but given the given the kind of electronics they’re interested in, they couldn’t find a use for a bag of 500 or so low specification 470uF capacitors. These were not low ESR types, nor high capacitance, so unsuitable for power supply use individually. But, what about stacking them all in parallel? (video, embedded below) After a few quick calculations [Kasyan] determined that the total capacitance of all 500 should be around 0.23 Farads with an ESR of around 0.4 to 0.5 mΩ at 16V and packing a theoretical energy total of about 30 joules. That is enough to pack a punch in the right situation.

A PCB was constructed to wire 168 of the little cans in parallel, with hefty wide traces, reinforced with multiple strands of 1.8mm diameter copper wire and a big thick layer of solder over the top. Three such PCBs were wired in parallel with the same copper wire, in order to keep the total resistance as low as possible. Such a thing has a few practical uses, since the super low measured ESR of 0.6mΩ and large capacitance makes it ideal for smoothing power supplies in many applications, but could it be used to make a spot welder? Well, yes and no. When combined with one of the those cheap Chinese ‘spot welder’ controllers, it does indeed produce some welds on a LiPo cell with a thin nickel plated battery strip, but blows straight through it with little penetration. [Kasyan] found that the capacitor bank could be used in parallel with a decent LiPo cell giving a potentially ideal combination — a huge initial punch from the capacitors to blow through the strip and get the weld started and the LiPo following through with a lower (but still huge) current for a little longer to assist with the penetration into the battery terminal, finishing off the weld.

[Kaysan] goes into some measurements of the peak current delivery and the profile thereof, showing that even a pile of pretty mundane parts can, with a little care, be turned into something useful. How does such an assembly compare with a single supercapacitor? We talked about supercaps and LiPo batteries a little while ago, which was an interesting discussion, and in case you’re still interested, graphene-based hybrid supercapacitors are a thing too!

Continue reading “Building A Spot Welder From 500 Junk Capacitors”