Building A Gimballed Motorcycle Helmet Camera From Scratch

[Nixie Guy] has hit all of important design elements in a single motorcycle helmet-cam project which packs in so much that the build log spans three posts. These cameras need to stand up to the elements and also to being pelted by insects at 80 MPH. They need to attach securely to the helmet without interfering with vision or movement of the head. And you should be able to adjust where they are pointing. The balance of features and cost available in consumer cameras make this list hard to satisfy — but with skills like these the bootstrapped camera came out great!

Where can you get a small, high quality camera? The drone industry has been iterating on this problem for a decade now and that’s where the guts of this creation come from. That produced an interesting issue, the board of the CADDX Turtle V2 camera gets really hot when in use and needs to have air flowing over it. So he threw a custom-milled heat sink into the side of the SLA resin printed housing to keep things somewhat cool.

Since the mill was already warmed up, why not do some mold making? Having already been working on a project to use a casting process for soft PCB membranes, this was the perfect technique to keep the buttons and the SD card slots weather tight on the helmet cam. A little pouch battery inside provides power, and the charging port on the back is a nice little magnet job.

Everything came together incredibly well. [Nixie Guy] does lament the color of the resin case, but that could be easily fixed by reprinting with colored resin.

While you’re bolting stuff onto your helmet, maybe some excessive bling is in order?

Continue reading “Building A Gimballed Motorcycle Helmet Camera From Scratch”

OAK Vision Modules Help You See The Forest And The Trees

OpenCV is an open source library of computer vision algorithms, its power and flexibility made many machine vision projects possible. But even with code highly optimized for maximum performance, we always wish for more. Which is why our ears perk up whenever we hear about a hardware accelerated vision module, and the latest buzz is coming out of the OpenCV AI Kit (OAK) Kickstarter campaign.

There are two vision modules launched with this campaign. The OAK-1 with a single color camera for two dimensional vision applications, and the OAK-D which adds stereo cameras for that third dimension. The onboard brain is a Movidius Myriad X processor which, according to team members who have dug through its datasheet, have been massively underutilized in other products. They believe OAK modules will help the chip fulfill its potential for vision applications, delivering high performance while consuming low power in a small form factor. Reading over the spec sheet, we think it’s fair to call these “Ultimate Myriad X Dev Boards” but we must concede “OpenCV AI Kit” sounds better. It does not provide hardware acceleration for the entire OpenCV library (likely an impossible task) but it does cover the highly demanding subset suitable for Myriad X acceleration.

Since the campaign launched a few weeks ago, some additional information have been released to help assure backers that this project has real substance. It turns out OAK is an evolution of a project we’ve covered almost exactly one year ago that became a real product DepthAI, so at least this is not their first rodeo. It is also encouraging that their invitation to the open hardware community has already borne fruit. Check out this thread discussing OAK for robot vision, where a question was met with an honest “we don’t have expertise there” from the OAK team, but then ArduCam pitched in with their camera module experience to help.

We wish them success for their planned December 2020 delivery. They have already far surpassed their funding goals, they’ve shipped hardware before, and we see a good start to a development community. We look forward to the OAK-1 and OAK-D joining the ranks of other hacking friendly vision modules like OpenMV, JeVois, StereoPi, and AIY Vision.

Bringing The Pi Camera Into Focus With LEGO

Ever since the high-quality camera for the Raspberry Pi was released a few months back it has been the center of attention for many hacks. In this quick build [Martin Mander] shows us how to make a servo-powered focusing mechanism entirely from LEGO.

The inspiration for this project came to him while he was working on his 1979 Merlin Pi Camera and found that setting the focus just right is vital in order to get good quality pictures. So he set himself the goal to build a mechanism that allows him to focus the camera precisely and remotely.

It is the plethora of LEGO-compatible parts that are available off-the-shelf that make such a project possible without the use of any 3D printed components. He not only found a LEGO-compatible continuous rotating servo but also a LEGO-compatible case for the Pi, and a LEGO cogwheel which almost fits exactly onto the camera lens. He also added a tripod mount to the case that allows him to set up the camera anywhere. The camera and focussing mechanism are controlled with a custom GUI based on guizero Python 3 library and the camera can be accessed remotely via VNCViewer.

If you prefer 3D printing over LEGO there are also other stylish Raspi HQ camera builds.

Video after the break.

Continue reading “Bringing The Pi Camera Into Focus With LEGO”

A Stylish Raspberry Pi Camera

The Raspberry Pi HQ camera module is an exciting product that for the first time puts something close to a decent quality interchangeable lens camera into the hands of hardware hackers. It’s already attracted the attention of those who have a wish to explore the boundaries of camera form factors. Our latest entrant in this field comes courtesy of [BBまどーし], who has opted for a very good 3D-printed analog of a conventional compact camera.

On the front as you might expect is the module, concealed behind a smart plastic ring. Behind that is a battery compartment, concealing not the brace of 18650s or the bare LiPo pouch that you might expect, but a 10,400 mAH USB power bank. Behind that is something approaching a conventional Raspberry Pi case, designed to take a Hyperpixel screen. The battery might seem an unadventurous choice, but it serves to highlight just how much bang for your buck can now be found in compact power banks. It may not have a hacker aesthetic, but you can’t argue with its cost and simplicity.

The details are the interesting part of this design, for instance it has a standard accessory shoe printed into its top. There is also a shutter button, but they admit to not being a software wizard enough to get it working. Perhaps a quick look at this Pi Camera in a 1970s Merlin game would be in order.

An HDMI Monitor From Your Phone

Digital video has proceeded to the point at which we have near-broadcast-quality HD production capabilities in the palm of our hand, and often for a surprisingly affordable price. One area in which the benefits haven’t quite made it to our wallets though is in the field of small HD monitors of the type you might place on top of a camera for filming. It’s a problem noted by [Neon Airship], who has come up with a solution allowing the use of an Android mobile phone as an HDMI monitor. Since many of us will now have a perfectly capable older phone gathering dust, it’s an attractive proposition with the potential to cost very little.

The secret isn’t the most elite of hacks in that it uses all off-the-shelf hardware, but sometimes that isn’t the only reason to be interested in a project such as this one. [Neon] is using an HDMI-to-USB capture card of the type that has recently become available from the usual sources for an astoundingly small sum. When paired with a suitable USB OTG cable, the adapter can be seen by the phone as just another webcam.

We see him try a few webcam viewer apps including one that rather worryingly demands a direct APK download, and the result is a very good quality HDMI monitor atop his camera that really didn’t break the bank. Sometimes the simplest of solutions deliver the most useful of results.

This is something of special interest to those of us who experiment with our own camera form factors.

Continue reading “An HDMI Monitor From Your Phone”

Why Are Digital Cameras Still Boring?

In the matter of technological advancement, we are as a species, mostly insatiable. The latest toy, the fastest silicon, the largest storage, the list goes on. Take digital cameras as an example, what was your first one? Mine was a Casio QV200 in about 1997, I still have it somewhere though I can’t immediately lay my hands on it, and it could hold a what was for its time a whopping 64 VGA-resolution pictures in its 4Mb of onboard memory.

The QV200 showing off its VGA capabilities. It's March 1998, and this is a brand-new PlayStation that I'm about to install a mod chip inside.
The QV200 showing off its VGA photography capabilities. It’s March 1998, and this is a brand-new PlayStation that I’m about to install a mod chip inside.

It’s a shock to realise that nearly a quarter century has passed since then, and its fixed-focus 640×480 camera module with a UV-sensitive CMOS sensor that gave everything a slight blue tint would not even grace the cheapest of feature phones in 2020. Every aspect of a digital camera has improved beyond measure since the first models in the 1980s and early 1990s that started to resemble what we’d know today as a standalone digital camera, they have near-limitless storage, excellent lenses, huge and faithfully-reproducing sensors, and broadcast-quality video capability.

But how playful have camera manufacturers been with the form factor? We see reporters in sci-fi movies toting cameras that look nothing like their film-based ancestors. What do our real-life digital cameras have on offer as far as creative body design goes?

Continue reading “Why Are Digital Cameras Still Boring?”

Scanning Analog Film For The Last Time

Film cameras are capable of great resolution, and for a long time were superior in this regard to their digital successors. However, it’s now possible to store digital copies of analog images in superior detail, so [Jan] built a rig to scan their photos for the last time.

The general idea is to take a high enough resolution scan of film negatives or slides, such that there is no need to rescan the images when technology moves forward. To achieve this, [Jan] decided to employ a DSLR to photograph the materials in question. To do this quickly and accurately, with minimal fuss, special lens hoods were 3D printed to hold slides in perfect register in front of the lens. With a flash to provide even light, the results are excellent. Film negatives proved harder, requiring a carefully designed transport mechanism to avoid damaging the fragile materials. With some perseverance, the final tool worked well.

It’s a tidy way of digitally archiving analog photos, and with the resolution of modern cameras, one needn’t worry about lost resolution. We’ve seen mechanised builds for handling other formats too, such as this 8mm scanner. Video after the break.

Continue reading “Scanning Analog Film For The Last Time”