waverider

Waverider: Scanning Spectra One Pixel At A Time

Hyperspectral cameras aren’t commonplace items; they capture spectral data for each of their pixels. While commercial hyperspectral cameras often start in the tens of thousands of dollars, [anfractuosity] decided to make his own with the Waverider.

To capture spectral data from every pixel location in the camera, [anfractuosity] first needed a way to collect that data — for that, he used an AFBR-S20M2WV, a miniature USB spectrometer he picked up second-hand. This sensor allows for the collection of data from 225 nm all the way up to 1000 nm. Of course, the sensor can only do that for one single input, so to turn it into a camera, [anfractuosity] added a stepper-driven x-y stage controlled by a Raspberry Pi Pico and some TMC2130 stepper drivers.

Continue reading “Waverider: Scanning Spectra One Pixel At A Time”

[Anthony] holding the EE8 kit

Making A 2-Transistor AM Radio With A Philips Electronic Engineer EE8 Kit From 1966

Back in 1966, a suitable toy for a geeky kid was a radio kit. You could find simple crystal radio sets or some more advanced ones. But some lucky kids got the Philips Electronic Engineer EE8 Kit on Christmas morning. [Anthony Francis-Jones] shows us how to build a 2-transistor AM radio from a Philips Electronic Engineer EE8 Kit.

According to [The Radar Room], the kit wasn’t just an AM radio. It had multiple circuits to make (one at a time, of course), ranging from a code oscillator to a “wetness detector.”

The kit came with a breadboard and some overlays for the various circuits, along with the required components. It relied on springs, friction, and gravity to hold most of the components to the breadboard. A little wire is used, but mostly the components are connected to each other with their leads and spring terminals.

Continue reading “Making A 2-Transistor AM Radio With A Philips Electronic Engineer EE8 Kit From 1966”

A Deep Dive Into The Coolness That Was CRT Projectors

CRT monitors: there’s nothing quite like ’em. But did you know that video projectors used to use CRTs? A trio of monochrome CRTs, in fact: one for each color; red, green, and blue. By their powers combined, these monsters were capable of fantastic resolution and image quality. Despite being nowhere near as bright as modern projectors, after being properly set up, [Technology Connections] says it’s still one of the best projected images he has seen outside of a movie theatre.

After a twenty-minute startup to reach thermal equilibrium, one can settle down with a chunky service manual for a ponderous calibration process involving an enormous remote control. The reward is a fantastic (albeit brightness-limited) picture.

Still, these projectors had drawbacks. They were limited in brightness, of course. But they were also complex, labor-intensive beasts to set up and calibrate. On the other hand, at least they were heavy.

[Technology Connections] gives us a good look at the Sony VPH-D50HT Mark II CRT Projector in its tri-lobed, liquid-cooled glory. This model is a relic by today’s standards, but natively supports 1080i via component video input and even preserves image quality and resolution by reshaping the image in each CRT to perform things like keystone correction, thus compensating for projection angle right at the source. Being an analog device, there is no hint of screen door effect or any other digital artifact. The picture is just there, limited only by the specks of phosphor on the face of each tube.

Converging and calibrating three separate projectors really was a nontrivial undertaking. There are some similarities to the big screen rear-projection TVs of the 90s and early 2000s (which were then displaced by plasma and flat-panel LCD displays). Unlike enclosed rear-projection TVs, the screen for projectors was not fixed, which meant all that calibration needed to be done on-site. A walkthrough of what that process was like — done with the help of many test patterns and a remote control that is as monstrous as it is confusing — starts at 15:35 in the video below.

Like rear-projection TVs, these projectors were displaced by newer technologies that were lighter, brighter, and easier to use. Still, just like other CRT displays, there was nothing quite like them. And if you find esoteric projector technologies intriguing, we have a feeling you will love the Eidophor.

Continue reading “A Deep Dive Into The Coolness That Was CRT Projectors”

BenchVolt PD

BenchVolt PD: USB PD Meets Benchtop Precision

USB power has become ubiquitous — everything from phones to laptops all use it  — so why not your lab bench? This is what [EEEngineer4Ever] set out to do with the BenchVolt PD USB adjustable bench power supply. This is more than just a simple breakout for standard USB PD voltages, mind you; with adjustable voltages, SCPI support, and much more.

The case is made of laser-cut acrylic, mounted to an aluminum base, not only providing a weighted base but also helping with dissipating heat when pulling the 100 W this is capable of supplying. Inside the clear exterior, not only do you get to peek at all the circuitry but there is also a bright 1.9-inch TFT screen showing the voltage, current, and wattage of the various outputs. There is a knob that can adjust the variable voltage output and navigate through the menu. Control isn’t limited to the knob, mind you; there also is a Python desktop application to make it easy changing the settings and to open up the possibility to integrate its control alongside other automated test equipment.

There are five voltage outputs in this supply: three fixed ones—1.8 V, 2.5 V, and 3.3 V—and two adjustable ones: 0.5-5 V and 2.5-32 V. All five of these outputs are capable of up to 3 A. There are also a variety of waveforms that can be output, blurring the lines between power supply and function generator. While the BenchVolt PD will be open-sourced, [EEEngineer4Ever] will soon be releasing it over on CrowdSupply for those interested in one without building one themselves. We are big fans of USB PD gear, so be sure to check out some other USB PD projects we’ve featured.

Continue reading “BenchVolt PD: USB PD Meets Benchtop Precision”

Piers holding a USB One ROM.

One ROM Gets A USB Stack

Our hacker [Piers Finlayson] is at it again, and this time he has added USB support to One ROM.

With this new connectivity you can attach your One ROM to your computer with a USB cable and then in a matter of seconds upload new firmware from your Chrome (or Chromium) web browser. This new connectivity will supplement but not replace the existing serial wire connectivity because the serial wire connectivity enables certain advanced use cases not supported by the USB stack, such as reprogramming a ROM in-place as it’s being served. The new USB interface will probably suit most users who just want to use One ROM to manage the ROMs for their old kit and who don’t need the extra functionality.

Addressing the question as to why he didn’t have USB connectivity from the start [Piers] claimed it was because he didn’t like soldering the USB sockets! But given this is a service he can get from his board house that is no longer his problem! [Piers] said he picked Micro USB over USB-C because the former demands less circuit board real estate than the latter. Squeezing everything on to the board remains a challenge!

Continue reading “One ROM Gets A USB Stack”

ASIC physical layout

The Entire Process Of Building An Open Source Analog ASIC

Our hacker [Pat Deegan] of Psychogenic Technologies shows us the entire process of designing an analog ASIC. An ASIC is of course an Application-Specific Integrated Circuit, which is basically just custom hardware. That’s right, “just” custom hardware.

Services such as those from Tiny Tapeout make it possible to get your hardware designs built. And tools such as those found in Tiny Tapeout Analog Design VM with Skywater 130 PDK make it possible to get your hardware designs… designed.

In the video [Pat] takes you through using xschem (for schematic capture) and magic (for physical layout) to design a custom ADC. We learn that when it comes to hardware you have the choice of many different types of FETs, and not much else. Capacitors are expensive and to be avoided. Inductors are verboten. Getting specific values for things (such as resistors) is pretty much impossible so you generally just have to hope that things come out in relative proportions.

Continue reading “The Entire Process Of Building An Open Source Analog ASIC”

splashflag iot swimming notification

Splashflag: Raising The Flag On A Pool Party

Some things are more fun when there are more folks involved, and enjoying time in the pool is one of those activities. Knowing this, [Bert Wagner] started thinking of ways to best coordinate pool activities with his kids and their neighborhood friends. Out of this came the Splashflag, an IoT device built from the ground up that provides fun pool parties and a great learning experience along the way.

The USB-powered Splashflag is housed in a 3D-printed case, with a simple 2×16 LCD mounted on the front to display the notification. There’s also a small servo mounted to the rear that raises a 3D-printed flag when the notification comes in—drawing your attention to it a bit more than just text alone would. Hidden on the back is also a reset button: a long press factory-resets the device to connect to a different Wi-Fi network, and a quick press clears the notification to return the device to its resting state.

Inside is an ESP32-S3 that drives the servo and display and connects to the Wi-Fi. The ESP32 is set up with a captive portal, easing the device’s connection to a wireless network. The ESP32, once connected, joins an MQTT broker hosted by [Bert Wagner], allowing easy sending of notifications via the web app he made to quickly and easily send out invitations.

Thanks, [Bert Wagner], for sharing the process of building this fun, unique IoT device—be sure to read all the details on his website or check out the code and design files available over on his GitHub. Check out some of our other IoT projects if this project has you interested in making your own.

Continue reading “Splashflag: Raising The Flag On A Pool Party”