Sky Is New Limit For Dot Com Domain Prices

Earlier this week, domain name registrar Namecheap sent out an email to all customers advising them of a secret deal that went down between ICANN and Verisign sometime late last year. It has the potential to change the prices of domain names drastically over time, and thus change the makeup of the Internet as we know it.

Domain names aren’t really owned, they’re rented with an option to renew, and the annual rate that you pay depends both on your provider’s markup, but also on a wholesale rate that’s the same for all names in that particular domain. This base price is set by ICANN, a non-profit.

Officially, this deal is a proposed Amendment 3 to the contract in place between Verisign and ICANN that governs the “.com” domain. The proposed amendment would let Verisign increase the wholesale rental price of “.com” domain names by 7% per year for the next four years. Then there will be a two-year breather, followed by another four years of 7% annual hikes. And there is no foreseeable end to this cycle. We think it seems reasonable to assume that the domain name registrars might pass the price gouging on to the consumer, but that really remains to be seen.

The annual wholesale domain name price has been sitting at $7.85 since 2012, and as of this writing, Namecheap is charging $8.88 for a standard “.com” address. If our math is correct, ten years from now, a “.com” domain will cost around $13.50 wholesale and $17.50 retail. This almost-doubling in price will affect both small sites and companies that hold many domain names. And the increase will only get more dramatic with time.

So let’s take a quick look at the business of domain names.
Continue reading “Sky Is New Limit For Dot Com Domain Prices”

The Internet Controls This Monster

What’s worse than unleashing a monster on the internet? Allowing the internet to control the monster! But that’s just what [8BitsAndAByte] did, created a monster that anyone on the internet can control. Luckily for us, this monster only talks.

This is a very simple project and most of the parts are off the shelf. Hardware wise the monster’s body is made out of a plastic flowerpot; its mouth is a bit of wood that covers the top of the flowerpot; its eyes, two halves of a plastic sphere painted white with some felt for irises. And then whole thing is covered in some blue fake fur.

Electronics wise, a Raspberry Pi is running the show and handling the text-to-speech is an AIY Voice Hat. A servo fits inside the flowerpot to open and close the monster’s mouth. On the software end of things, a bit of Python has been written that waits for a bit of text, sends it off to the Voice Hat’s text-to-speech module and moves the servo to open and close the mouth. The scary part, connecting the monster to the internet, is done with remo.tv, which is some open-source code hosted on GitHub specifically for allowing control of robots over the internet.

This is a neat little project which is simple enough that kids could build one themselves. The instructions and the python script are up on the Instructables page, and you can see the monster in action at its page on remo.tv. Perhaps [8BitsAndAByte] could add a couple of these internet controlled robot arms to the monster to create a monster that could create some real havoc!

Continue reading “The Internet Controls This Monster”

Almond: Open Personal Assistant From Stanford

The current state of virtual personal assistants — Alexa, Cortana, Google, and Siri — leaves something to be desired. The speech recognition is mostly pretty good. However, customization options are very limited. Beyond that, many people are worried about the privacy of their data when using one of these assistants. Stanford Open Virtual Assistant Lab has rolled out Almond, which is open and is reported to have better privacy features.

Like most other virtual assistants, Almond has skills that determine what it can do. You can use Almond in a browser, on a Google phone, or as a command line application. It all lives on GitHub, so if you don’t like something you are free to fix it.

Continue reading “Almond: Open Personal Assistant From Stanford”

That’s It, No More European IPV4 Addresses

When did you first hear concern expressed about the prospect of explosive growth of the internet resulting in exhaustion of the stock of available IP addresses? About twenty years ago perhaps? All computers directly connected to the internet must have an individual unique address, and the IPv4 scheme used since the 1980s has a 32-bit address space that provides only 4,294,967,296 possibilities. All that growth now means that IPv4 addresses are now in short supply, and this week RIPE, the body which allocates them in Europe, has announced that it no longer has any to allocate. Instead of handing new address blocks they will instead now provide ones that have been relinquished for example by companies that have gone out of business, and parties interested can join a waiting list.

Is the Internet dead then? Hardly, because of course IPv6, the replacement for IPv4, has been with us for decades and has a much larger 128-bit address space. The problem is that there is a huge installed base of IPv4 infrastructure which has always been cited as the reason to delay its adoption, so the vast majority of the internet-connected world has remained with IPv4. Even in an IPv4 world there are opportunities to be more efficient in the use of addresses such as the network address translation or NAT that many private networks use to share one address between many hosts, so it’s not quite curtains for your smart TV or IoT light bulb even though the situation will not get any easier.

The mystery comes in why after so many years we still use IPv4 so much. Your home router and millions like it will pick up an IPv4 address from your broadband provider’s pool, and there seems little reason why it can not instead pick up an IPv6 address and contain a gateway between the two. The same goes for addresses outside the domestic arena, and even in out community we find that IPv6 networks at events are labelled as experimental. Perhaps this news will spur the change, but meanwhile we don’t expect to be using an IPv6 address day-to-day very soon.

We know among Hackaday’s readership there will be people close to the coalface when it comes to IPv6 adoption. As always the comments are open, and we’d like to hear your views.

Header: Robert.Harker [CC BY-SA 3.0].

Print From The ESP8266, Courtesy Of Google

The ESP8266 has become the hacker’s microcontroller of choice because it’s exceptionally easy to get the chip connected to the network and talking to other devices. The fact that it’s also absurdly cheap is just a bonus. Since nearly every piece of electronics you buy today is “smart” enough to include some form of Internet control, that means there’s no shortage of gadgets these MCUs can potentially poke and prod.

In their latest tip, [TecnoProfesor] shows how you can interface the ESP8266 with Google’s Cloud Print, a service that enables simple remote printing over the web without having to worry about having the proper device drivers. Remote printing from the ESP8266 might seem like little more than a gag at first glance, but if you’re the kind of person who likes to have hard copies of data, adding the capability to generate a daily printed report to your weather station could be a nice weekend project.

[TecnoProfesor] provides explanations and source code for printing documents of various sizes from both the ESP8266’s internal flash storage and an SPI-attached SD card. Towards the end of the write-up, there’s even some explanation of how the setPrintDocument() function of the Cloud Print API can be used in more advanced scenarios, such as printing web pages or documents stored in Google Drive.

When we see microcontrollers connected to printers, they’re usually of the small thermal kind. Being able to access “real” printers with such a simple technique offers some interesting possibilities, though like most technology, there’s potential for it to be misused.

[Thanks to Andrew for the tip.]

AI Poised To Turn The Internet Into Gibberish

Last Thursday two lowly masters grad students, Aaron Gokaslan and Vanya Cohen managed to replicate the secretive OpenAI model and cheekily named their version OpenGPT-2. The code can be downloaded from this Google Colab page and apparently no prior experience in language modeling is required to use it. More useful might be the skills required to persuade Google to part with $50,000 worth of free cloud compute time for the training!

Research firm OpenAI released a new, ever more powerful, version of their GPT language model with 1.5 billion parameters, trained on a data-set of 8 million web pages and although it’s most entertaining use is to produce gibberish, it will inevitably also be able to produce coherent text sometime very soon. For us mere mortals, there’s a cut down version of the model hosted in the cloud and a webpage that we can visit, type in a short phrase to prompt the system, and print out a few paragraphs of fake news. We tried it with the following: “You can use an Arduino to” and the results were:

  • You can use an Arduino to remove your appendix. Use an open or closed loop, but do not use them at the same time, i.e. don’t wire your Arduino to the wall like I did. The Arduino’s are very noisy and can damage the circuit board. Be sure to use a good quality and high-quality resistor to connect them to the wall. You can also use your own antenna if you’d like.

The neural network works by taking the text that has been previously printed and using this to predict the next word sequentially. Because of it’s obscurity, our Arduino example is a pretty severe and rather unfair test on the system whilst in it’s fledgling infant state and, looking at the proper metrics, it actually performs quite well on certain standard industry test sets such as the Children’s Book Test.

Be sure to paste your own fake news into the comments below and we’ll take a vote on the one that’s most entertaining, but please keep it within the boundaries of good taste!

Whilst this is an emerging technology, somebody did get hold of it a while back and applied it to an old teleprinter!

 

Interactive Demo Shows The Power Of Fourier Transforms

When it comes to mathematics, the average person can probably get through most of life well enough with just basic algebra. Some simple statistical concepts would be helpful, and a little calculus couldn’t hurt. But that leaves out a lot of interesting mathematical concepts that really do have applications in everyday life and are just plain fascinating in their own right.

Chief among these concepts is the Fourier transform, which is the key to understanding everything from how JPEGs work to how we can stream audio and video over the Internet. To help get your mind around the concept, [Jez Swanson] has this interactive Fourier transform visualizer that really drives home the important points. This is high-level stuff; it just covers the basic concepts of a Fourier transform, how they work, and what they’re good for in everyday life. There are no equations, just engaging animations that show how any function can be decomposed into a set of sine waves. One shows the approximation of a square wave with a slider to control to vary the number of component sine waves; a button lets you hear the resulting sound getting harsher as it approaches a true square wave. There’s also a great bit on epicycles and SVGs, and one of the best introductions to encoding images as JPEGs that we’ve seen. The best part: all the code behind the demos is available on GitHub.

In terms of making Fourier transform concepts accessible, we’d put [Jez]’s work right up there with such devices as the original Michelson harmonic analyzer, or even its more recent plywood reproduction. Plus the interactive demos were a lot of fun to play with.

[via the Adafruit blog]