Liberating Birds For A Cheap Electric Scooter

A few months ago, several companies started deploying electric scooters on the sidewalks of cities around the United States. These scooters were standard, off-the-shelf electric scooters made in China, loaded up with battery packs, motors, and a ‘brain box’ that has a GPS unit, a cellular modem, and a few more electronics that turn this dumb electric scooter into something you can ride via an app. Dropping electronic waste on cities around the country was not looked upon kindly by these municipalities, and right now there are hundreds of Bird and Lime scooters in towing yards, just waiting to be auctioned off to the highest bidder.

This is a remarkable opportunity for anyone who can turn a screwdriver and handle a soldering iron. For mere pennies on the dollar you can buy dozens of these scooters, and you can own thousands of dollars in batteries and electronics if you show up to the right auction. [humanbeing21] over on the scootertalk forums is preparing for the Bird apocalypse, and he’s already converted a few of these scooters to be his personal transportation device.

The subject of this conversion are scooters deployed by Bird, which are in actuality Xiaomi MIJIA M365 scooters with a few added electronics to connect to the Internet. The ‘conversion kit’ for a Bird scooter comes directly from China, costs $30, and is apparently a plug-and-play sort of deal. The hardest part is finding a screwdriver with the right security bits, but that again is a problem eBay is more than willing to solve.

Right now, [humanbeing21] is in contact with a towing company that has well over a hundred Bird scooters on their lot, each accruing daily storage fees. Since these scooters only cost about $400 new, we’re probably well past the time when it makes sense for Bird to pay to get them out of storage. This means they’ll probably be heading for an auction where anyone can pick them up — all of them — for a hundred bucks or so.

Right now, scooter hacking is becoming one of the most interesting adventures in modern-day hacking. You’ve got batteries and electronics and motors just sitting there, ready for the taking (and yes, through these auctions you can do this legally). We’re looking at a future filled with 18650-based Powerwalls from discarded electric scooters and quadcopters built around scooter motors filling the skies. This is cyberpunk, and we can’t wait to see the other builds these scooters will become.

Spend All Day On The Lake

Solar vehicles are getting more and more common as the price of solar panels comes down, and the availability of motors and controllers for all of these vehicles rises. Making a solar-electric bike from a kit is one thing, but this solar-powered boat is a master class in hacking at all levels, from the solar drive train to the pontoons, and even the anchor.

[J Mantzel] has many videos about his boat on his channel, and watching them all will likely leave you wanting to build your own. He builds almost everything on his boat from scratch from things he has lying around. For example, the anchor was hand-built from fiberglass and then filled with concrete, and his steering system is a semi-complex system of ropes, pulleys, and shafts. Most of the boat’s shell was hand-built from fiberglass as well, and everything that can be repurposed is saved for later use.

The ten panels, batteries, inverter, and other miscellaneous part of the system were about half of the cost of the whole vessel, but he reports that he also uses the boat as a backup power source for his house, and can use the system to run other things like an electric chainsaw for example. He also uses the boat for camping and construction, and without having to worry about fuel it has been very useful to him.

If you get into the videos on the channel, you’ll find that this isn’t his only solar-powered boat. He recently completed a solar speedboat as well with a custom-built propeller that can really move across the water. His videos are apparently very popular as well, since they have been linked to repeatedly by readers in some of the recent solar vehicle write-ups we’ve published.

Continue reading “Spend All Day On The Lake”

Thrift Store Razor Scooter Gets More Kick

Beyond pride, the biggest issue keeping adults off small motorized scooters is the fact that their tiny motors usually don’t have the power to move anything heavier than your average eighth grader. That didn’t stop [The_Didlyest] from snapping up this $7 thrift store find, but it did mean the hot pink scooter would need to be beefed up if it had any hope of moving 170 lbs of hacker.

Logically, the first step was fitting a more capable motor. [The_Didlyest] used an electric wheelchair motor which had a similar enough diameter that mounting it was fairly straightforward. The original sprocket and chain are still used, as are the mounting holes in the frame (though they had to be tapped to a larger size). That said, the new motor is considerably longer than its predecessor so some frame metal had to be cut away. This left the scooter without a kickstand and with a few inches of motor hanging out of its left side, but it’s all in the name of progress.

Naturally the upgraded motor needed similarly upgraded batteries to power it, so [The_Didlyest] put together a custom pack using eighteen 18650 cells spot welded together for a total output of 25V. Coupled with a 60A battery management system (BMS), the final 6S 3P configured pack is a very professional little unit, though the liberal application of duct tape keeps it from getting too full of itself.

Unfortunately the original motor controller consisted of nothing but relays, and didn’t allow adjusting speed. So that needed to go as well. In its place is a homebrew speed controller made with three parallel MOSFETs and an Arduino to read the analog value from the throttle and convert that into a PWM signal.

[The_Didlyest] says the rear tire is now in need of an upgrade to transmit all this new power to the road, and some gearing might be in order, but otherwise the scooter rebuild was a complete success. Capable of mastering hills and with a top speed of about 10 MPH, the performance is certainly better than the stock hardware.

Of course this is far from the first time we’ve seen somebody put a little extra pepper on a scooter. Some of them even end up being street-legal rides.

Go Up A Creek Without A Paddle

Kayaks are a some of the most versatile watercraft around. You can fish from them, go on backpacking trips, or just cruise around your local lake for a few hours. They’re inexpensive, lightweight, don’t require fuel, and typically don’t require a license or insurance to operate. They also make a great platform for a solar-powered boat like this one with only 150 watts of panels and a custom-built motor with parts from an RC airplane.

[William Frasier] built his solar-powered kayak using three solar panels, two mounted across the bow of the boat using pontoons to keep them from dipping into the water, and the other mounted aft. Separating the panels like this helps to prevent all three of them being shaded at once when passing under bridges. They’re all wired in parallel to a 12V custom-built motor which is an accomplishment in itself. It uses custom-turned parts from teak, a rot-resistant wood, is housed in an aluminum enclosure, and uses an RC airplane propeller for propulsion.

Without using the paddles and under full sun, the kayak can propel itself at about 4 knots (7 kmh) which is comparable to a kayak being propelled by a human with a paddle. With a battery, some of the shading problems could be eliminated, and adding an autopilot to it would make it almost 100% autonomous.

Continue reading “Go Up A Creek Without A Paddle”

Adopting An Orphaned Ultralight

Owning and flying your own small airplane offers a nearly unmatched level of freedom and autonomy. Traveling “as the crow flies” without having to deal with traffic on the ground immediately shrinks your world, and makes possible all sorts of trips and adventures. Unfortunately the crippling downsides of plane ownership (storage and maintenance costs, knowledge that you might die in a fiery crash, etc), keeps most of us planted squarely on terra firma.

But not [ITman496]. His dream of owning an ultralight has recently come true, and he’s decided to share his experience with the world. He’s got a long way to go before he slips the surly bonds of Earth, but there’s no better place to start than the beginning. In a recent blog post he documents the process of getting his new toy home, and details some of the work he plans on doing to get it airworthy.

The plane in question is a Mini-MAX that [ITman496] has determined is not only older than he is, but has never flown. It was built by a retired aircraft mechanic who unfortunately had problems with his heart towards the end of assembly. He wisely decided that he should find a safer way to spend his free time than performing solo flights in an experimental aircraft, so he put the plane up for sale.

After a considerable adventure transporting the plane back home, [ITman496] found it was stored in such good condition that the engine started right up. But that doesn’t mean it’s ready for takeoff by any stretch of the imagination. For his own safety, he’s planning on tearing down the entire plane to make sure everything is in good shape and assembled correctly; so at least he’ll only have himself to blame if anything happens when he’s in the air.

One the plane’s structure is sound, he’ll move on to some much needed engine modifications including a way to adjust the air-fuel mixture from inside the cockpit, improvements to the cooling system, and installation of a exhaust system that’s actually intended for the two-stroke engine he has. When that’s done, [ITman496] is going to move onto the real fun stuff: creating his own “glass cockpit”.

For Hackaday readers who don’t spend their time playing make believe in flight simulators, a “glass cockpit” is a general term for using digital displays rather than analog gauges in a vehicle. [ITman496] has already bought two daylight-readable 10.1″ IPS displays which he plans on driving over HDMI with the Raspberry Pi. No word on what his software setup and sensor array will look like, but we’re eager to hear more as the project progresses.

If you’re not lucky enough to find a mostly-complete kit plane nearby on Craigslist, you could always just make your own airplane out of sheets of foam.

9 Planes Combine To Make One Giant Flexible Flier

[Ran D. St. Clair] has created a unique flying machine in the Flex 9. It’s not every day that you see a completely new and unusual aircraft, but the Flex 9 definitely fits the bill. [Ran] took 9 radio controlled planes, connected them together, and made one giant plane — and with an 18-foot wingspan, giant isn’t a misnomer.

The planes that make up the Flex 9 are simple aircraft – foamboard wings, a boom, and a basic tail. The individual planes only have elevator control – no rudder, no ailerons. Power comes from a standard LiPo battery, ESC and brushless outrunner motor. The control system is interesting – every plane has a KK board flight controller running OpenAeroVTOL firmware. The center plane has a radio receiver and communicates to the other KK boards over standard servo wires. Rudder (yaw) and aileron (bank) control are achieved through mixing handled by flight controllers.

Even the couplings between the planes were carefully designed. [Ran] used an EPP foam core as a rubbery dampener, with plywood to strengthen the joint. Each joint is mounted at a 20-degree angle. As the planes bank relative to each other, the angle forces the airframe to twist, which should help the whole system stay level.

Check out the videos below for an explanation and a flight test. The Flex 9 launch isn’t exactly stable – there’s some crazy sinusoidal wobbling going on. But the mechanical and electronic dampeners quickly spring into action smoothing the flight out.

If you’d like to know more about the KK board, you can read about right here.

Continue reading “9 Planes Combine To Make One Giant Flexible Flier”

Pedal Far With A Solar Powered Tricycle

More and more electric bikes have been rolling out into the streets lately as people realize how inexpensive and easy they are to ride and use when compared to cars. They can also be pedaled like a normal bike, so it’s still possible to get some exercise with them too. Most have a range somewhere around 10-30 miles depending on battery size, weight, and aerodynamics, but with a few upgrades such as solar panels it’s possible to go much, much further on a charge.

[The Rambling Shepherd] had a tricycle (in the US, generally still considered a bicycle from a legal standpoint) that he had already converted to electric with a hub motor and battery, and was getting incredible range when using it to supplement his manual pedaling. He wanted to do better, though, and decided to add a few solar panels to his build. His first attempt didn’t fare so well as the 3D-printed mounts for the panel failed, but with a quick revision his second attempt survived a 50-mile trip. Even more impressive, he only had his battery half charged at the beginning of the journey but was still able to make it thanks to the added energy from the panels.

If you’re thinking that this looks familiar, we recently featured a tandem tricycle that was making a solar-powered trip from Europe to China with a similar design. It has the advantage of allowing the rider to pedal in the shade, and in a relatively comfortable riding position compared to a normal bike. Future planned upgrades include an MPPT charge controller to improve the efficiency of the panels.

Continue reading “Pedal Far With A Solar Powered Tricycle”