This Vapour Deposition Chamber Isn’t Vapourware

If you are an astronomer with an optical reflecting telescope, the quality of your mirror is one of your most significant concerns. Large observatories will therefore often have on-site vapour deposition plants to revitalise their reflectors by depositing a fresh layer of aluminium upon them. You might think that such a device would be the preserve only of such well-funded sites, but perhaps [Michael Koch]’s work will prove you wrong. He’s created his own vapour deposition system (Google Translate link of the German original) from scratch, and while it might be smaller than the institutional equivalents it is no less effective in its task.

At the heart of it is a stainless steel vacuum vessel with a two stage vacuum pump system to evacuate it. The mirror to be silvered is suspended in the vessel, and a piece of aluminium is suspended over a coil of tungsten wire that his electrically heated to melt it. The molten aluminium is described as “wetting” the tungsten wire in the same manner as we’ll be used to solder working on copper, but in the vacuum it vaporizes and deposits itself upon the mirror. Such a simple description glosses over the impressive work that went into it.

This is a long-running project that isn’t entirely new, but very much worth a look if only for its introduction to this fascinating field. If you are new to vacuum work, how about looking at a Superconference presentation introducing vacuum technology?

Thanks [Paul Bauer] for the tip.

Lathe Turns The Corner, Makes A Cube

[Tim] was tired of using his lathe to turn round things. He decided to make a gaming die—something that’s iconically square—out of cylindrical scrap. As it turns out, this is possible to do on a lathe with a three jaw chuck. [Tim] discovered that the bevel on the jaws will hold a cylindrical puck of scrap sideways while he squares off the round sides into faces.

Turning a cube on a lathe looks pretty fiddly, so we applaud [Tim]’s lovely handiwork even more. As you’ll see in the video down below, things were going gangbusters until he went to make the last facing cut. Maybe the tool wasn’t lined up just so, or something was off in the chucking, but the first pass made a bit of a gouge in the stock. Looks like it was easy enough to fix, though. After four 90° turns and facing cuts, he had a nice looking rough cube to work with.

This is a regulation-sized die, so the next step was to trim it down to 16mm³. Then it was time to sand, polish, and add the dots. To lay them out, [Tim] sprayed the cube with layout fluid and scribed unique line patterns on each face. Then he drilled the indentations and filled them in with aluminium black.

Most of the dice we see are electronic, like this extremely random pair and these PIC-driven LED dice. We’d like to see [Tim] make a second D6 so he has a pair. And then make a D20. Please?

Continue reading “Lathe Turns The Corner, Makes A Cube”

Robotic Arm Rivals Industrial Counterparts

We’ve seen industrial robotic arms in real life. We’ve seen them in classrooms and factories. Before today, we’ve never mistaken a homemade robotic arm for one of the price-of-a-new-home robotic arms. Today, [Chris Annin] made us look twice when we watched the video of his six-axis robotic arm. Most of the DIY arms have a personal flare from their creator so we have to assume [Chris Annin] is either a robot himself or he intended to build a very clean-looking arm when he started.

He puts it through its paces in the video, available after the break, by starting with some stretches, weight-lifting, then following it up and a game of Jenga. After a hard day, we see the arm helping in the kitchen and even cracking open a cold one. At the ten-minute mark, [Chris Annin] walks us through the major components and talks about where to find many, many more details about the arm.

Many of the robotic arms on Hackaday are here by virtue of resourcefulness, creativity or unusual implementation but this one is here because of its similarity to the big boys.

Continue reading “Robotic Arm Rivals Industrial Counterparts”

Pouring 1200° Tea: Foundry In A Fire Extinguisher

Let’s face it — the design of most home foundries leaves something to be desired. Most foundries are great at melting metal, but when it comes to pouring the melt, awkward handling can easily lead to horrific results. That’s why we appreciate the thought that went into this electric melting pot foundry.

Sure, electric foundries lack some of the sex-appeal of gas- or even charcoal-fueled foundries, but by eschewing the open flames and shooting sparks, [Turbo Conquering Mega Eagle] was able to integrate the crucible into the foundry body and create what looks for all the world like a Thermos bottle for molten aluminum.

The body is a decapitated fire extinguisher, while the crucible appears to just be a length of steel pipe. An electric stove heating element is wrapped around the crucible, PID control of which is taken care of by an external controller and solid state relay. Insulated with Pearlite and provided with a handle, pours are now as safe as making a nice cup of 1200° tea.

You’ll perhaps recall that [Turbo Conquering Mega Eagle] has a thing for electric foundries, although we have to say the fit and finish of the current work far exceeds his previous quick-and-dirty build using an old electric stove.

Continue reading “Pouring 1200° Tea: Foundry In A Fire Extinguisher”

Stealing Joules From An Aluminium-Air Battery

While batteries are cheap and readily obtainable today, sometimes it’s still fun to mess around with their less-common manifestations. Experimenting with a few configurations, Hackaday.io user [will.stevens] has assembled an aluminium-air battery and combined it with a joule thief to light an LED.

To build the air battery, soak an activated charcoal puck — from a water filter, for example — in salt-saturated water while you cut the base off an aluminium can. A circle of tissue paper — also saturated with the salt water — is pressed between the bare charcoal disk and the can, taking care not to rip the paper, and topped off with a penny and a bit of wire. Once clamped together, the reaction is able to power an LED via a simple joule thief.

Continue reading “Stealing Joules From An Aluminium-Air Battery”

Making Metal Dominoes

Nearly as versatile as a deck of playing cards, dominoes are a great addition to any rainy-day repertoire of game sets. [Apollo] from the Youtube channel [carbide3d] has manufactured for themselves a custom set of domino tiles replete with brass pips.

Cutting the bar stock to the appropriate size, [Apollo] ran a few test engravings and hole sizes for the brass pips. That done, all they had to do was repeat the engraving and milling process another couple dozen times, as well as all the requisite wet and dry sanding, and buffing. [Apollo] opted to use paint marker to add a little extra style to the tiles, and advises any other makers who want to do the same to set their engraving depth to .01″ so  the paint marker won’t be rubbed off when buffing the pieces.

When it came to installing the brass balls, [Apollo] undersized the holes by .001″-.002″ for a snug press fit — adding that the hole depth is a little greater than half the ball’s diameter. They used 1/8″ balls for the pips, and 3/16 balls for the center of the tiles which also allows the tiles to be spun for a bit of fidgeting fun during play. Check out the build video after the break.

Continue reading “Making Metal Dominoes”

Innovating A Better Printing Platform

Just because you have a fancy new 3D printer doesn’t mean that innovation should stop there. Almost everyone has had a print go foul if the first layer doesn’t properly adhere to the printing platform — to say nothing of difficulty in dislodging the piece once it’s finished. Facing mixed results with some established tricks meant to combat these issues, [D. Scott Williamson] — a regular at Chicago’s Workshop 88 makerspace — has documented his trials to find a better printer platform.3D Printer Steel Print Plate 1

For what he had (a printer without a heated plate), painter’s tape and hairspray wasn’t cutting it, especially when it came time to remove the print as the tape wouldn’t completely come off the part. How then, to kill two birds with one stone? Eureka! A flexible metal covering for the printing plate.

Continue reading “Innovating A Better Printing Platform”