Liquid Metal Battery Goes Into Production

The news is rife with claims of the next great thing in clean energy generation, but most of these technologies never make it to production. Whether that’s due to cost issues, production, or scalability, we’re often teased with industry breakthroughs that never come to fruition. Multi-layered solar panels, wave and tidal energy, and hydrogen fuel cells are all things that are real but can’t seem to break through and overtake other lower cost, simpler, and proven technologies. One that seems to be bucking this trend is the liquid metal battery, which startup Ambri is putting into service on the electrical grid next year.

With lithium ion battery installations running around $405 per kilowatt-hour, Ambri’s battery technology is already poised to be somewhat disruptive at a cost of about half that. The construction method is simpler than lithium as well, using molten metal electrodes and a molten salt electrolyte. Not only is this more durable, it’s also not flammable and is largely immune to degradation over time. The company’s testing results indicate that after 20 years the battery is expected to still retain 95% of its capacity. The only hitch in scaling this technology could be issues with sourcing antimony, one of the metals needed for this type of construction.

Even though Ambri can produce these batteries for $180 to $250 per kilowatt-hour, they need to get the costs down to about $20 for the technology to be cost-competitive with “base load” power plants (an outdated term in itself). They do project their costs to come down significantly and hit this mark by 2030, which would put electrical grids on course to be powered entirely by renewables. Liquid metal batteries aren’t the only nontraditional battery out there trying to solve this problem, though. Another promising interesting energy storage technology on the horizon is phase-change materials.

Minimizing Stress On A Coin Cell Battery

When it comes to powering tiny devices for a long time, coin cell batteries are the battery of choice for things like keyfobs, watches, and even some IoT devices. They’re inexpensive and compact and a great choice for very small electricity needs. Their major downside is that they have a relatively high internal resistance, meaning they can’t supply a lot of current for very long without decreasing the lifespan of the battery. This new integrated circuit uses a special DC-DC converter to get over that hurdle and extend the life of a coin cell significantly.

A typical DC-DC converter uses a rapidly switching transistor to regulate the energy flow through an inductor and capacitor, effectively stepping up or stepping down the voltage. Rather than relying on a single converter, this circuit uses a two-stage system. The first is a boost converter to step the voltage from the coin cell up to as much as 11 volts to charge a storage capacitor. The second is a buck converter which steps that voltage down when there is a high current demand. This causes less overall voltage drop on the battery meaning less stress for it and a longer operating life in the device.

There are a few other features of this circuit as well, including an optimizer which watches the behavior of the circuit and learns about the power demands being placed on it. That way, the storage capacitor is only charged up to its maximum capacity if the optimizer determines that much charge is needed. With all of these features a coin cell could last around seven times as long as one using more traditional circuitry. If you really need to get every last bit of energy from a battery, though, you can always use a joule thief.

An Open Firmware For LILYGO’s E-ink Smart Watch

The world’s first quartz wristwatches were miles ahead of electric and mechanical wristwatches by most standards of the time, their accuracy was unprecedented and the batteries typically lasted somewhere on the order of a year. Modern smart watches, at least in terms of battery life, have taken a step backwards — depending on use, some can require daily charging.

If you’re looking to bridge the gap between a day and a year, you might look into a smart watch with an e-ink display. One option is the ESP32-based LILYGO T-Wrist. Of course, it’s not a smart watch without some software to run on it, which is where qpaperOS comes in.

Developed by [qewer33], this open source firmware for the T-Wrist is designed to get the most out of the battery by updating only once per minute. With a 250 mAh battery, it should last about five days on a charge. Of course, with the power of the ESP32 comes a whole host of other features including GPS, a step counter, and a weather display, although since the firmware is still under development, some of these features have yet to be implemented.

With all of the code available, qpaperOS could make an excellent platform from which to build your own smart watch around. Or perhaps you could chip in and add some of the features on the whislity. The ESP32 is a capable and versatile chip, even capable of playing popular 8-bit video games, although we’re not sure this functionality would fit in a smart watch and preserve battery life at the same time.

A Deep Dive On Battery Life

There are all kinds of old wives’ tales surrounding proper battery use floating around in the popular culture. Things like needing to fully discharge a battery every so often, unplugging devices when they’re fully charged, or keeping batteries in the fridge are all examples that have some kernel of truth to them but often are improperly applied. If you really want to know the truth about a specific battery, its behavior, and its features, it helps to dig in and actually take some measurements directly like [Tyler] has done with a vast array of embedded batteries in IoT devices.

[Tyler] is a firmware engineer by trade, so he is deeply familiar with this type of small battery. Battery performance can change dramatically under all kinds of scenarios, most important among them being temperature. But even the same type of battery can behave differently to others that are otherwise identical, which is why it’s important to have metrics for the batteries themselves and be able to measure them to identify behaviors and possible problems. [Tyler] has a system of best practices in place for monitoring battery performance, especially after things like firmware upgrades since small software changes can often have a decent impact on battery performance.

While working with huge fleets of devices, [Tyler] outlines plenty of methods for working with batteries, deploying them, and making sure they’re working well for customers. A lot of it is extremely useful for other engineers looking to develop large-scale products like this but it’s also good knowledge to have for those of us rolling out our own one-off projects that will operate under battery power. After all, not caring for one’s lithium batteries can have disastrous consequences.

Crab Shells Massively Improve Zinc-Ion Batteries

In the fast-moving world of battery research, scientists are constantly on the lookout for innovative materials with the right properties to help improve energy storage. Meanwhile, batteries are in greater demand than ever as production of EVs and renewable energy projects ramp up to new heights.

In the hunt for new and better battery materials, scientists found an unexpected hero: crab shells.Researchers at the University of Maryland have uncovered a remarkable breakthrough by exploring their use in battery production.

Continue reading “Crab Shells Massively Improve Zinc-Ion Batteries”

Reverse Engineering A Classic ThinkPad Battery

The ThinkPad 701 is an iconic laptop series from the mid-90s and is still highly sought after today because of its famous butterfly keybaord. The laptop itself is tiny even by the standards of the time, so in order to fit a full-size keyboard IBM devised a mechanism where the keyboard splits and slides over itself to hide away as the screen is closed. But, like most 30-year-old laptops, the original batteries for these computers are well past their prime. [polymatt] takes us through all of the steps needed in order to recreate a battery from this era down to the last detail.

He starts by disassembling an old battery with extensive damage from the old, leaky batteries. The first part of the recreation is to measure the battery casing so a new one can be modeled and printed. The control boards for the batteries of these computers were not too sophisticated, so [polymatt] is able to use a logic analyzer with a working unit to duplicate its behavior on an ATtiny microcontroller. With that out of the way, a new PCB is created to host the cloned chip and a new battery pack, made out of 9 NiMH cells is put together.

[polymatt] wanted this build to be as authentic as possible, so he even goes as far as replicating the label on the underside of the battery. With everything put together he has a faithful recreation of this decades-old battery for a famous retro laptop. ThinkPads are popular laptops in general, too, due to their fairly high build quality (at least for their enterprise lineups) and comprehensive driver support especially for Linux and other open-source software projects like coreboot and libreboot.

Thanks to [Roman UA] for the tip!

Continue reading “Reverse Engineering A Classic ThinkPad Battery”

Get Back Your Replaceable Batteries, Thanks To The EU

The world’s tech companies must harbour a hearty dislike for the European Union because when the many cogs of its bureaucracies turn, they find themselves with little choice but to follow or risk losing access to a huge and affluent market. There are a few areas of technology that don’t have some concessions to EU rules in their manufacturing process, and if a common charging connector or right to repair weren’t enough, they’re back for another clash with the mobile phone industry. If you hanker for the days of replaceable mobile phone batteries, you’re in luck because an EU Parliament vote has approved a set of rules covering batteries among which will be a requirement for replaceable cells in portable appliances.

We expect that the phone manufacturers will drag their feet just as some of them have over charger ports, but the greater ease of maintenance, as well as extra longevity for phones, can only be a good thing. There are a few other measures in the package, and one of them caught our eye, the introduction of a battery passport for larger industrial and EV batteries. There’s little more information in the press release, but we hope that it doesn’t inhibit their exploitation by people in our community when introduced.

We look forward to seeing more replaceable battery models appear in due course, meanwhile, you can read some of our coverage of the EU’s right-to-repair measures.

Header: Andy Melton, USA, CC BY-SA 2.0.