Keep Pedaling To Keep Playing

It’s been said that the best way to tackle the issue of childhood obesity would be to hook those children’s video game consoles up to a pedal-powered generator. Of course, this was said by [Alex], the creator of Cykill. Cykill interfaces an Xbox to an exercise bike, so to keep the video game going you’ll have to keep pedaling the bike.

While there is no generator involved in this project, it does mimic the effect of powering electronics from a one. The exercise bike has a set of communications wires, which are connected to a relay on the Xbox’s power plug. When the relay notices that the bike isn’t being pedaled enough, it automatically cuts power to the console. Of course, the risk of corrupting a hard drive is high with this method, but that only serves to increase the motivation to continue pedaling.

The project goes even further in order to eliminate temptation to bypass the bike. [Alex] super-glued the plug of the Xbox to the relay, making it extremely difficult to get around the exercise requirement. If you’re after usable energy instead of a daily workout, though, there are bikes out there that can power just about any piece of machinery you can imagine.

Bicycle Racing In Space Could Be A Thing

It’s 2100 AD, and hackers and normals live together in mile-long habitats in the Earth-Moon system. The habitat is spun up so that the gravity inside is that of Earth, and for exercise, the normals cycle around on bike paths. But the hackers do their cycling outside, in the vacuum of space.

How so? With ion thrusters, rocketing out xenon gas as the propellant. And the source of power? Ultimately that’s the hackers’ legs, pedaling away at a drive system that turns two large Wimshurst machines.

Those Wimshurst machines then produce the high voltage needed for the thruster’s ionization as well as the charge flow. They’re also what gives the space bike it’s distinctly bicycle-like appearance. And based on the calculations below, this may someday work!

Continue reading “Bicycle Racing In Space Could Be A Thing”

Simple Electric Bike Conversion From 3D-Printed Parts

Challenge: Perform an electric conversion on a bicycle. Problem: No significant metal working skills or equipment. Solution: 3D print everything needed to electrify the bike.

At least that’s the approach that [Tom Stanton] took to his electric bike build. Having caught the electric locomotion bug on a recent longboard build, [Tom] undertook the upgrade of a cheap “fixie,” or fixed-gear bike. His delta printer was big enough for the motor mount and weather-resistant ESC enclosure, but he needed to print the drive pulley in four quadrants that were later glued together. We can’t say we hold much faith in the zip ties that transmit all the torque through the rear wheel’s spokes, but as a proof of concept it seems sturdy enough. With a throttle from an electric scooter and a battery in a saddle bag, the bike turns in pretty decent performance — at least after a minor gearing change. And everything blends in or accents the black frame of the bike, so it’s a good-looking build to boot.

Want to catch the cheap electric personal transportation bug too? Check out this electric longboard, or this all-terrain hoverboard.

Continue reading “Simple Electric Bike Conversion From 3D-Printed Parts”

Suffer No Substitutes — The Hudspith Steam Bicycle Is One-Of-A-Kind

In a bit of punky, steam-based tinkering, Brittish engineer [Geoff Hudspith]’s obsession for steam and passion for cycles fused into the Hudspith Steam Bicycle.

Built and improved over the past thirty years, the custom steam engine uses a petrol and kerosene mix for fuel, reaching a top speed of 32km/h and has a range of 16km on one tank of water. While in motion, the boiler is counter-balanced by the water tank on the rear as well as the flywheel, water pump, and the other components. However, [Hudspith] says he doesn’t have an easy go of it carrying the bike up the flight of stairs to his flat — as you can imagine. A steam whistle was fitted to the bike after insistence from others — and perhaps for safety’s sake as well, since it does take a bit of distance to stop the bike.

Many people have offered large sums for it — and at least one house in exchange for the bike — but [Hudspith] has held on to this one-of-a-kind steam-machine. A little more about the development of the bicycle can be read here! A video of the bike in action is waiting after the break.

Continue reading “Suffer No Substitutes — The Hudspith Steam Bicycle Is One-Of-A-Kind”

Take A Bicycle Tour Anywhere In The World

Imagine yourself riding through the countryside of Tuscany in the morning, then popping over to Champagne for a tour in the evening without taking a plane ride in the intermission. In fact, you don’t have to leave your living room. All you need is a stationary bicycle, a VR headset, and CycleVR.

[Aaron Puzey] hasn’t quite made the inter-country leap quite like that, but he has cycled the entire length of the UK, from its southern point to its northernmost tip. The 1500km journey took 85 hours over the course of eight months to complete.

CycleVR is actually a VR app created using Unity. It takes advantage of Google street view’s panoramic image data, using Bluetooth to monitor the cycling pace  and transition between the panorama capture points. So, the static images of pedestrians and cars clipping and distorting as the panorama images load might throw off the illusion at first, but there’s thousands of side streets and country roads out there where this won’t be as pronounced. Check out the highlight reel from [Puzey]’s journey after the break.

Continue reading “Take A Bicycle Tour Anywhere In The World”

Arduino + Geometry + Bicycle = Speedometer

It is pretty easy to go to a big box store and get a digital speedometer for your bike. Not only is that no fun, but the little digital display isn’t going to win you any hacker cred. [AlexGyver] has the answer. Using an Arduino and a servo he built a classic needle speedometer for his bike. It also has a digital display and uses a hall effect sensor to pick up the wheel speed. You can see a video of the project below.

[Alex] talks about the geometry involved, in case your high school math is well into your rear view mirror. The circumference of the wheel is the distance you’ll travel in one revolution. If you know the distance and you know the time, you know the speed and the rest is just conversions to get a numerical speed into an angle on the servo motor. The code is out on GitHub.

Continue reading “Arduino + Geometry + Bicycle = Speedometer”

3D Printed Bicycle From Stainless Steel!

You wouldn’t 3D print a car, would you? That’d simply be impractical. However, if you’re a team of students attending the Delft University of Technology (TU Delft) in the Netherlands, you might be inclined to 3D print a stainless steel bicycle instead.

The TU Delft team collaborated with MX3D, a company that uses an articulated industrial robot arm with a welder for an effector, welding and building the Arc Bicycle, glob by molten glob. Printed in chunks, this process allows the practical construction of larger objects that are able to withstand the stresses and forces of everyday use. Weighing around 20kg, you might not want to spend much time carrying it up to an apartment anytime soon, so stick to the cobblestone streets — the Arc Bicycle can take it.

Continue reading “3D Printed Bicycle From Stainless Steel!”