Alexa, Sudo Read My Resistor! A Challenge For Hackers

Nothing makes us feel more like we’re on Star Trek then saying “Computer, turn on desk light,” and watching the light turn on. Of course, normal people would have left the wake up word as “Alexa,” but we like “Computer” even if it does make it hard to watch Star Trek episodes without the home automation going crazy.

There’s a lot of hype right now about how voice recognition and artificial intelligence (AI) are transforming everything. We’ve even seen a few high-profile types warning that AI is going to come alive and put us in the matrix or something. That gets a lot of press, but we’re not sure we are even close to that, yet. Alexa and Google’s similar offerings are cool, there’s no doubt about it. The speech recognition is pretty good, although far from perfect. But the AI is really far off still.

Today’s devices utilize two rather rudimentary parts to provide an interaction with users. The first is how the devices pattern match language; it isn’t all that sophisticated. The other is the trivial nature of many of the apps, or — as Alexa calls them — skills. There are some good ones to be sure, but for every one useful application of the technology, there’s a dozen that are just text-to-speech of an RSS feed. Looking through the skills available we were amused at how many different offerings convert resistor color codes back and forth to values.

There was a time when building electronics meant learning the resistor color code. With today’s emphasis on surface mount components, though, it is less useful than it used to be. Still, like flossing, you really ought to do it. However, if you have an Amazon Alexa, it can learn the color code for you thanks to [Dennis Mantz].

Don’t have an Alexa? You can still try it in your browser, as we will show you shortly. There are at least eight similar skills out there like this one from [Steve Jernigan] or [Andrew Bergstrom’s] Resistor Reader.

Continue reading “Alexa, Sudo Read My Resistor! A Challenge For Hackers”

That’s No Moon! That’s A Virtual Assistant

[Wisecracker] likes how the Amazon Echo Dot works, but he doesn’t like how they sound or how they resemble hockey pucks. A little 3D printing, though, and he transformed the Dot into a credible Death Star. That doesn’t sound very friendly, we guess, so he calls it Alex-Star.

What makes it work is the Death Star’s “superlaser” — the weapon operated by a console that looks suspiciously like some studio video equipment — happens to be about the size and shape of a two-inch speaker. [Wisecracker] added a slot to let the sound out of the second speaker. You can see the thing in action in the video below.

Continue reading “That’s No Moon! That’s A Virtual Assistant”

Controlling A Game Room With Amazon Echo

If there are two things we love here at Hackaday, it’s games and automating mundane tasks by adding a lot of electronics and voice control. A game room is, therefore, the perfect sandbox for projects that get us excited in all of the right ways. Liberty Games, a UK-based games room company, already had a really impressive game room (as you might expect). They’ve just posted an awesome build log showcasing how they went about automating mundane game room tasks by adding a lot of electronics and voice control.

There were four tasks that Liberty Games wanted to be able to complete with voice control: releasing billiards balls on their pool table, adding credits to an arcade machine, releasing pinballs on a pinball machine, and control of a CD jukebox. For all of these tasks, they used an Amazon Echo, which already has built-in support for adding new “skills” (Amazon’s term for user-created Alexa commands). These skills allow the Echo to communicate with other devices using JavaScript Object Notation (JSON).

Continue reading “Controlling A Game Room With Amazon Echo”

Retrofitting A Vintage Intercom To Run Amazon Alexa

The Amazon Echo is a pretty cool piece of tech: it lets you ask questions, queue up music, find out the weather, and more, without having to do anything but talk. But, the device itself is a bit pricey, and looks a little boring. What if you could have all the features of the Echo, but in a cool retro case and at a cheaper price?

Well, you can, and that’s exactly what [nick.r.brewer] did, using a ’50s intercom and a Raspberry Pi. He picked the vintage intercom up at an antique store for $20, and the Raspberry Pi Zero is less than $10. So, for about $30 (and some parts most of us have lying around) he was able to build a cool looking device with all of the capabilities of the Amazon Echo.

The hardware portion of the build was pretty straightforward, with the Raspberry Pi, a sound card, WiFi dongle, USB hub, and microphone all fitting nicely inside the case of the intercom. The software side of things is a little more tricky, but with a device like this it runs well with Amazon’s Alexa SDK. Of course, if you want to add more hardware features, that’s possible too.

Continue reading “Retrofitting A Vintage Intercom To Run Amazon Alexa”

Tape Loop Echo Made With An Actual Tape Loop

A lot of digital processes are named after an old analog device that they’ve since replaced. It’s not uncommon to “tape” a show nowadays, for example, even though the recording work is actually done by a digital video recorder. Sometimes, though, the old analog devices have a certain je ne sais quoi that is desirable even in today’s digital world. This is certainly the case with [Dima]’s tape loop echo which is actually made with a physical tape loop.

The process of building the tape loop hardware is surprisingly non-technical. By positioning a recording head and a playback head right next to one another, a delay is introduced. An echo is created by mixing the original live sound signal with this delayed signal coming from the tape By varying the speed of the tape or altering several other variables, many different-sounding effects can be achieved.

Although in practice it’s not as simple as it sounds (the device required a lot of trial-and-error), the resulting effect is one that Pink Floyd or Beck would surely be proud of. Analog isn’t the only way to go though, there are plenty of digital effects that are easily created, and some with interesting mounting options as well.

Continue reading “Tape Loop Echo Made With An Actual Tape Loop”

Control Nest Devices With Amazon Echo

[ZPriddy] was looking for a way to control his Nest thermostats with Amazon Echo. He didn’t want to settle for using AWS or some other hosted service. [ZPriddy] wanted something that he could host and manage completely on his own. The end result is what he calls EchoNestPy.

[ZPriddy] started by learning how to use the Alexa Skills Kit (ASK). ASK is the official SDK that allows enthusiasts to add functionality to their Amazon Echo. Unfortunately for [ZPriddy], most of the example code he found was designed to be used on Amazon Lambda, but that didn’t stop him. After finding a few examples of Amazon Echo requests and responses, he was on his way.

[ZPriddy] chose to implement a simple web server using Flask. The web server listens for the Amazon requests and responds appropriately. It also Oauth2 authentication to ensure some level of security. The server is capable of synchronizing the temperature of multiple Nest devices in the same home, but it can also increment or increment the temperature across the board. This is accomplished with some simple voice commands such as “Tell Nest that I’m a little bit chilly”. If you like Amazon Echo hacks, be sure to check out this other one for controlling WeMo devices. Continue reading “Control Nest Devices With Amazon Echo”

Microcassette Recorders Become A Tape Delay

Long before audio engineers had fancy digital delays, or even crappy analog delays, there were tape delays. Running a tape around in a loop with a record and play head is the basis of the Echoplex and Space Echo, and both of these machines are incredible pieces of engineering.

Microcassette recorders are not, in general, incredible pieces of engineering. They do, however, have a strip of magnetic tape, a record head, and a play head. Put two of them together, and you can build your own tape delay.

The basic principle of a tape delay is simple enough – just run a loop of tape round in a circle, through a record and playback head, record some audio, and send the output to an amplifier. In practice, it’s not that simple. [dogenigt] had to manufacture his own tape loop from microcassettes, a process that took far too long and was far too finicky.

For a control circuit, [dogenigt] is using four audio pots and one linear pot for speed control. The audio pots are responsible for input gain, feedback, the amplitude of the clean signal, and the output of the signal after it’s been run through the delay.

Apart from being one of those builds that’s very dependent on the mechanical skill of the builder, it’s a pretty simple delay unit, with all the electronics already designed for a stripboard layout. You can hear an example of what it sounds like below.

Continue reading “Microcassette Recorders Become A Tape Delay”