Classic Toy Helicopter Flies Again As DIY Version

For many of us who grew up in the 1970s, “VertiBird”, the fly-it-yourself indoor helicopter, was a toy that was begged for often enough that it eventually appeared under the Christmas tree. And more than a few of the fascinating but delicate toys were defunct by Christmas afternoon, victims of the fatal combination of exuberant play and price-point engineering. But now a DIY version of the classic toy flies again, this time with a more robust design.

To be fair to the designers at Mattel, the toy company that marketed VertiBird, the toy was pretty amazing. The plastic helicopter was powered by a motor located in the central base, which rotated a drive rod that ran through a stiff tether. Small springs in the base and at the copter acted as universal joints to transmit power to the rotor. These springs were the weak point in the design, especially the one in the base, often snapping in two.

[Luke J. Barker]’s redesign puts a tiny gear motor in the aircraft rather than in the base, something that wouldn’t have been feasible in the original. To address the problem of getting electrical power from the base to the aircraft, [Luke] eschewed an expensive slip ring and instead used a standard 3.5-mm audio jack and plug. The plug serves as an axle for the main gear in the base that powers the copter’s rotation; sadly, this version doesn’t tilt the aircraft mechanically to control backward and forward flight like the original. A pair of pots with 3D-printed levers control throttle and flight direction through an Arduino; see it in action in the video below.

These pages abound with rotorcraft builds, both helicopters and multirotor. We appreciate all manner of flying machines, but this one really takes us back.

Continue reading “Classic Toy Helicopter Flies Again As DIY Version”

Robot Hummingbird Imitates Nature

Purdue’s Bio-Robotics lab has been working on a robotic hummingbird and, as you can see in the videos below, have had a lot of success. What’s more, is they’ve shared that success on GitHub. If you want to make a flapping-winged robot, this is definitely where you start.

If you’ve ever watched a hummingbird, you know their flight capability is nothing short of spectacular. The Purdue robot flies in a similar fashion (although on a tether to get both power and control information) and relies on each wing having its own motor. The motors not only propel the wings but also act as sensors. For example, they can detect if a wing is damaged, has made contact with something, or has changed performance due to atmospheric conditions.

In addition to the tethered control system, the hummingbird requires a motion capture sensor external to itself and some machine learning. Researchers note that there is sufficient payload capacity to put batteries onboard and they would also need additional sensors to accomplish totally free flight. It is amazing when you realize that a real hummingbird manages all this with a little bitty brain.

The published code is in Python and is part of three presentations later this month at a technical conference (the IEEE International Conference on Robotics and Automation).  If you don’t want to wait on the paper, there’s a post on IEEE Spectrum about the robotic beast, available now and that article contains preprint versions of the papers. The Python code does require a bit to run, so expect a significant flight computer.

The last hummingbird bot we saw was a spy. We’ve also seen robots that were like bees — sort of.

Continue reading “Robot Hummingbird Imitates Nature”

Gliding Back Home From 60,000ft

If you want to play around with high altitudes, weather balloons are the way to go. With a bit of latex and some helium, it’s possible to scrape up against the edge of space without having to start your own rocketry program. [Blake] was interested in doing just this, and decided to build a near space glider which could capture the journey.

There are certain challenges involved with this flight regime, which [Blake] worked to overcome. There was significant investment in the right antennas and radio hardware to enable communication and control of the aircraft at vast distances. Batteries were chosen for their ability to work at low temperatures in the high altitude environment, and excess heat from the transmitters was use to keep them warm.

The glider was also fitted with an Ardupilot Mega which would control the gliders’s flight after separation from the lift balloon. [Blake] had some success flying the aircraft at 60,000 feet, but found that due to communications issues, the autopilot was doing a better job. The initial flight was largely a success, with the glider landing just 9 miles off target due to headwinds.

We’ve seen glider builds on other autopilot platforms, too. Video after the break.

Continue reading “Gliding Back Home From 60,000ft”

Flying Convenience Not So Convenient

It’s a situation that plays out every day, all over the world – you walk into work, and there’s a full-scale foam toilet sitting on the bench, demanding to be used in a crackpot project. This time, it happened to be at the [FliteTest] workshop, and naturally, they set about making it fly.

The team at [FliteTest] are well resourced, with a laser cutter being used to quickly produce a set of custom foam board wings. However, after wing failures on their previous projects, this time the team opted for a riveted aluminium wing spar to add strength. A twin-boom tail is used to try to avoid the cistern from interfering with airflow over the elevator, and careful attention is paid to make sure the center of gravity is in the right position for stable flight.

Despite the team’s laudable efforts, the toilet (somewhat unsurprisingly) flies like crap. It just goes to show, you can strap a brushless power system on to just about anything, but aerodynamics will still be standing ready to bring it all crashing down to Earth.

We’ve seen some great builds from [FliteTest] over the years – before the throne, it was an IKEA chair that soared amongst the clouds. Video after the break.

[Thanks to Baldpower for the tip!] Continue reading “Flying Convenience Not So Convenient”

R/C Whirlygig Is Terrifyingly Unstable

In the days during and immediately after World War II, aerospace research was a forefront consideration for national security. All manner of wild designs were explored as nation states attempted to gain the upper hand in the struggle for survival. The Hiller Hornet was one such craft built during this time – a helicopter which drove the rotor through tip-mounted ramjets. Unsurprisingly, this configuration had plenty of drawbacks which prevented it from ever reaching full production. The team at [FliteTest] had a soft spot for the craft, however, and used it to inspire their latest radio controlled experiment.

Initial experiments consisted of a modified foam wing from a model seaplane, with two left wings facing opposite directions, and joined in the middle. Two motors and props were fitted to the wings to provide rotational motion. After some initial vibration issues were solved, the improvised craft generated barely enough lift to get off the ground. Other problems were faced with centripetal forces tearing the propellers off the wing due to the high rotational speeds involved.

A second attempt started from scratch, with a four wing setup being used, with much higher camber, with the intention to generate more lift with a more aggressive airfoil, allowing rotational speeds to be decreased. The craft was capable of getting off the ground, but instabilities likened to the pendulum rocket fallacy prevented any major gain in altitude.

We’d love to see a redesign to solve some of the issues and allow the craft to sail higher into the air. If you think you know the solution to the whirly bird’s dynamic problems, be sure to let us know in the comments. It should be possible, as we’ve seen successful designs inspired by maple seeds before. Video after the break.

[Thanks to Baldpower for the tip!]

Continue reading “R/C Whirlygig Is Terrifyingly Unstable”

Paper Airplane Database Has The Wright Stuff

We’ve always had a fascination with things that fly. Sure, drones are the latest incarnation of that, but there have been RC planes, kites, and all sorts of flying toys and gizmos even before manned flight was possible. Maybe the first model flying machine you had was a paper airplane. There’s some debate, but it appears the Chinese and Japanese made paper airplanes 2,000 years ago. Now there’s a database of paper airplane designs, some familiar and some very cool-looking ones we just might have to try.

If you folded the usual planes in school, you’ll find those here. But you’ll also find exotic designs like the Sea Glider and the UFO. The database lets you select from planes that work better for distance, flight time, acrobatics, or decoration. You can also select the construction difficulty and if you need to make cuts in the paper or not. There are 40 designs in all at the moment. There are step-by-step instructions, printable folding instructions, and even YouTube videos showing how to build the planes.

Continue reading “Paper Airplane Database Has The Wright Stuff”

Daedalus Jet Suit Takes To The Skies

[Richard Browning] wants to fly like Daedalus. To us, it looks a bit more like Iron Man. [Browning] is working on project Daedalus, a flight suit powered by six jet engines. These turbines are exactly the type one would find on large, fast, and expensive R/C planes. Some of this is documented on his YouTube channel, Gravity Industries, though RedBull has also gotten involved and have a video of their own that you can check out after the break.

The project started last year in [Browning’s] garage. He strapped a jet to an old washing machine to test its thrust. The jet nearly flipped the machine over, so he knew he would have enough power to fly. The suit started with a turbine strapped to each arm. Then it became two on each arm. This was enough for moonlike hops, but not enough for actual flight. Strapping an engine to each leg worked but was rather hard to control. The current configuration features two turbines per arm, and two on a backpack.

The whole setup is quite similar to [Frank Zapata]’s Flyboard Air, with one key difference – [Browning] is supporting two thirds of his weight with his hands. The effect is similar to supporting oneself on gymnastic rings, which is part of his extreme physical training regimen.

Continue reading “Daedalus Jet Suit Takes To The Skies”