Building A New RF Remote From Scratch

We’ve seen no shortage of projects that use the ESP8266 or ESP32 to add “smart” features to existing home appliances, often by pairing the microcontroller with a radio or IR transmitter. If your device has an existing remote, integrating it into a custom home automation system is often just a matter of getting a few cheap modular components and writing some simple code to glue it all together.

But what if the appliance you want to control doesn’t use a common frequency? That’s a question that [eigma] recently had to answer after finding the remote control for the bedroom ceiling fan was operating at a somewhat unusual 304 MHz. Something like the MAX1472 could probably have been tuned to this frequency, but the chip doesn’t seem to be available in a turn-key module as the popular 315 MHz transmitters are.

There were a few possible options, including using a software defined radio (SDR), but [eigma] didn’t want to spend a fortune on this project or wait months for parts to get shipped from overseas. The most straightforward solution was to design a custom transmitter tuned to the proper frequency using discrete components; something of a dark art to those of us who’ve been spoiled by the high availability of modular components.

What follows is an fascinating look at the design, testing, and troubleshooting of a truly scratch-built transmitter. You won’t find any ICs here, the carrier signal is generated with just a transistor, some carefully measured pieces of wire, and a handful of passive components. By modulating the signal with an ESP32, [eigma] successfully makes the oddball ceiling fan an honorary member of the Internet of Things.

The write-up that [eigma] has done is an absolutely invaluable resource if you ever find yourself in need of rolling a bespoke transmitter. It easily ranks among some of the most informative radio reverse engineering work we’ve covered, and you’d be wise to file this one away for future reference. That said, most of the newer hardware you’re going to run into will probably be utilizing a widely-supported frequency like 433 MHz.

Automate The Freight: Shipping Containers Sorted By Robot Stevedores

Towering behemoths are prowling the docks of Auckland, New Zealand, in a neverending shuffle of shipping containers, stacking and unstacking them like so many out-sized LEGO bricks. And they’re doing it all without human guidance.
It’s hard to overstate the impact containerized cargo has had on the modern world. The ability to load and unload ships laden with containers of standardized sizes rapidly with cranes, and then being able to plunk those boxes down onto a truck chassis or railcar carrier for land transportation has been a boon to the world’s economy, and it’s one of the main reasons we can order electronic doo-dads from China and have them show up at our doors essentially for free. At least eventually.
As with anything, solving one problem often creates other problems, and containerization is no different. The advantages of being able to load and unload one container rather than separately handling the dozen or more pallets that can fit inside it are obvious. But what then does one do with a dozen enormous containers? Or hundreds of them?
That’s where these giant self-driving cranes come in, and as we’ll see in this installment of “Automate the Freight”, these autonomous stevedores are helping ports milk as much value as possible out of containerization.

Continue reading “Automate The Freight: Shipping Containers Sorted By Robot Stevedores”

Laser-Cut Modular Toolbox

[ystoelen] created this modular wooden toolbox out of laser-cut 5mm plywood secured with leather hinges bolted into place. The leather strips secure the various tool boards with grommets connecting to plastic plugs. The toolboards use cross-shaped holes with laser-cut plugs and strips of elastic securing the tools, allowing each board to be uniquely configured depending on what tool is being stored there. There is a larger, “main” board, onto which smaller boards can be placed depending on what tools you’ll need.

While this is a clever approach to tool transport, we have some concerns about this project. Usually the problem with a box full of tools is that you’ve overloaded it and can’t readily lift it up. Often this involves a steel toolbox that won’t break, no matter what happens. But a plywood construct isn’t nearly that strong, and if overloaded or dropped it’s gonna take some damage.

For more toolbox inspirations, read our posts on a machine shop in a toolbox as well as this Transformers-themed portable workbench.

 

Climbing Bike Storage Thwarts Thieves?

If you’ve got an expensive bike and don’t mind carrying around a whole bunch of extra weight in your courier bag you’ll like this concept. A design team built a pole-climbing bike rack in about 14 days. The video after the break shows the prototyping process as well as the finished “lock” in use. It’s a commercial for the company that employs the designers, but this is one kind of advert we don’t mind watching.

Square channel makes up the body of the device, with a set of Rollerblade wheels which grab a light pole and use three 12V gear motors for climbing. The controller is a wireless fob similar to those used for keyless entry on cars. In the video you can hear the cliché sound of a car alarm being set once the carrier reaches its finished height. Nice.

Continue reading “Climbing Bike Storage Thwarts Thieves?”

Aircraft Carrier Is Moving Target For Autonomous Quadcopter

[Karl-Engelbert Wenzel] developed a UAV capable of taking off and landing on a moving platform autonomously. The platform operates aircraft-carrier-style by driving around the room in circles. The quadcopter tracks a grid of IR LEDs at the front of the landing deck by using the IR camera from a Wii remote. The best part is that the flight controls and processing are all done by the copter’s onboard ATmega644 processor, not requiring a connection to a PC. The landings are quite accurate, achieving a maximum error of less than 40 centimeters. In the video after the break you can see the first landing is slightly off the mark but the next two are dead on target.

So build yourself a mobile platform and pair it up with your newly finished quadcopter to replicate this delightful hack.

Continue reading “Aircraft Carrier Is Moving Target For Autonomous Quadcopter”