Hanging Christmas Lights With No Ladder And No Fuss

Getting up on a ladder to hang Christmas lights is a great way to hurt yourself if you’re not careful, and winter conditions only add to the peril. One enterprising hacker has whipped up a neat way to avoid ladders entirely, by hanging their lights while planted safely on the ground.

Result!

The build uses hefty magnets and triangle eye bolts, attached at regular intervals to the string of Christmas lights. The magnets are used to hold the lights to metal roof siding, while the hooks allow the lights to be lifted into place using a hook on a large extendable pole. Washers, spacers, and screws are used to attach the magnets and hooks to the lights.

For a layout that follows the lines of a simple peaked roof, this hack works great. For more complicated installations, you might still have to climb up a ladder. We’ve featured great primers on getting started with advanced Christmas light displays before, if you’re looking to up your game.

Meanwhile, no matter how much you enjoy seasonal decoration brinkmanship, don’t even think about watching Deck the Halls (2006). Danny Devito has saved a lot of films, but he couldn’t save this. Happy holidays!

Digital Hourglass Counts Down The Seconds

If someone asked you to build a digital hourglass, what would your design look like? [BitBlt_Korry] took on that challenge, creating a functional art piece that hits it right on the nose: an hourglass with a digital display

Iron filings fall between two pieces of plexiglass while ghostly numbers appear, counting down 30 seconds. Just as quickly as they appear, the numbers disappear – dropping down to the bottom of the enclosure. Each second is punctuated by what might be the loudest clock tick we’ve ever heard.

Of course, it’s not all magic. The hourglass is controlled by a Raspberry Pi Pico running code in MicroPython. The pico drives a series of transistors, which in turn are used to control 14 solenoids.  The solenoids serve double duty — first, they move pieces of flat “fridge magnet” material close enough to attract iron filings. Their second duty is of course provide a clock tick that will definitely get your attention.

Tilt sensors are the user input to the hourglass, letting the Pi Pico know which end is up when it’s time to start a new 30-second countdown.

[BitBlt_Korry] mentions that the hardest part of the project was setting the screws at the top and bottom of the hourglass to get the perfect uniform flow of iron filings. 

[BitBlt_Korry] calls his creation “「時場(じば)」”.  Google translates this to “Jiba”, which means “magnetic field”.  We’re not native speakers, but we’re guessing there is a double meaning there.

This isn’t the first time we’ve seen humble iron filings stand up and dance at our command. If iron dust is too dry a topic, we’ve got plenty of ferrofluid projects as well!

Continue reading “Digital Hourglass Counts Down The Seconds”

Magnetic Maniac Manages Mangled Memory

Ahh, floppy disks. Few things carry nostalgia quite like a floppy — either 3 1⁄2 or 5 1⁄4, depending on which generation of hacker you happen to be. (And yes, we hear you grey-beards, 8-inch floppies were definitely a thing.) The real goodies aren’t the floppies themselves, but what they carried, like Wolfenstein 3d, Commander Keen, DOS, or any number of other classics from the past. Unfortunately a bunch of floppy disks these aren’t carrying anything anymore, as bit rot eventually catches up with them. Even worse, on some trashed floppies, a format operation fails, too. Surely, these floppies are destined for the trash, right?
Continue reading “Magnetic Maniac Manages Mangled Memory”

Printing Magnets

A research center in Spain has been working on ways to solve recent supply chain issues. One of these issues is a shortage of materials to make magnets. Their answer? Recycle ferrite residue by treating it and mixing it with ABS for 3D printing.

The mixing of ferrite with a polymer isn’t the key though, instead the trick is in the processing. The team collected strontium ferrite waste and ground it to a powder. Heating to the point of calcination (about 1000C) creates a superior material with a 350% increase in coercitivity and a 25% increase in remanence over the original waste material.

Continue reading “Printing Magnets”

Tiny 3D Printed Magnets Show Patterns

You normally associate a double helix with DNA, but an international team headquartered at Cambridge University used 3D printing to create magnetic double helixes that are about a 1,000 times smaller than a human hair. Why do such a thing? We aren’t sure why they started, but they were able to find nanoscale topological features in the magnetic field and they think it will change how magnetic devices work in the future — especially magnetic storage devices.

In particular, researchers feel this is a step towards practical “racetrack” memory that stores magnetic information in three dimensions instead of two and offer high density and RAM-like access times. You can read the full paper if you want the gory details.

Continue reading “Tiny 3D Printed Magnets Show Patterns”

Tiny ball magnets implanted in muscles could provide much better control over prosthetics.

Magnets Could Give Prosthetic Control A Leg Up

Today, prostheses and exoskeletons are controlled using electromyography. In other words, by recording the electrical activity in muscles as they contract. It’s neither intuitive nor human-like, and it really only shows the brain’s intent, not the reality of what the muscle is doing.

Researchers at MIT’s Media Lab have figured out a way to use magnets for much more precise control, and they’re calling it magnetomicrometry (MM). By implanting pairs of tiny ball magnets and tracking their movement with magnetic sensors, each muscle can be measured individually and far more accurately than with electromyography.

After embedding pairs of 3mm diameter ball magnets into the calves of turkeys, the researchers were able to detect muscle movement in three milliseconds, and to the precision of thirty-seven microns, which is about the width of a human hair. They hope to try MM on humans within the next couple of years. It would be a great solution overall if it works out, because compared with the electromyography method, MM is cheaper, less invasive, and potentially permanent. Couple MM with a new type of amputation surgery called AMI that provides a fuller range of motion, less pain overall, and finer control of prosthetics, and the future of prostheses and rehabilitation looks really exciting. Be sure to check out the video after the break.

There’s more than one way to control prostheses, such as deep learning and somatosensory stimulation.

Continue reading “Magnets Could Give Prosthetic Control A Leg Up”

Rotary Time Tracker Puts A New Spin On Productivity

Like many of us, [quincy] feels the distracting pull of non-work programs on what has become a mixed-use computer. So what’s the answer to the puzzle of work-life balance? We’re not sure, but time management and keeping track of tasks will probably get you most of the way there. The only problem is that keeping track of these things is boring and tedious and way too easy to forget, even for the fun tasks.

Similar commercial gadgets exist to serve this time-tracking purpose, but [quincy] wanted something much cooler that would work the same way: turn the indicator to the current task, and the status gets recorded on a computer. Rather than some smart polygon with informative stickers on each face à la the Timeflip2, [quincy] built a rotary task manager that serves the same purpose, but does it with magnets.

Our favorite part aside from the magnets has to be the clever binary encoding work. [quincy] is using three photoresistors and a single green LED to create a 3D-printed gray encoder that sidesteps the need to ever flip two bits at once. An Arduino takes care of reading the 3-bit code and converting it back into a decimal. There are more updates to come, including the main .ino file, but you can start printing the pieces while you wait.

If you have trouble staying on task, maybe you need a Pomodoro timer. We’ve seen a few over the years, ranging from the minimal to the sculptural.