Electric Vehicles Continue The Same Wasteful Mistakes That Limit Longevity

A while back, I sat in the newish electric car that was the pride and joy of a friend of mine, and had what was at the time an odd experience. Instead of getting in, turning the key, and driving off, the car instead had to boot up.

The feeling was of a piece of software rather than a piece of hardware, and there was a tangible wait before the start button could be pressed. It was a miracle of technology that could travel smoothly and quietly for all but the longest journeys I could possibly throw at it on relative pennies-worth of electricity, but I hated it. As a technologist and car enthusiast, I should be all over these types of motor vehicles. I live for new technology and I lust after its latest incarnations in many fields including automobiles.

I want my next car to have an electric motor, I want it to push the boundaries of what is capable with a battery and I want it to be an automotive tour de force. The switch to electric cars represents an opportunity like no other to deliver a new type of car that doesn’t carry the baggage of what has gone before, but in that car I saw a future in which they were going badly astray.

I don’t want my next vehicle to be a car like my friend’s one, and to understand why that is the case it’s worth going back a few decades to the cars my parents drove back when when jumpers were goalposts, and the home computer was just a gleam in the eye of a few long-haired outsiders in California.

Continue reading “Electric Vehicles Continue The Same Wasteful Mistakes That Limit Longevity”

Gain An Understanding Of Injection Molding’s Design Gotchas

When it comes to manufacturing, sheet metal and injection molding make the world go ’round. As a manufacturing method, injection molding has its own range of unique design issues and gotchas that are better to be aware of than not. To help with this awareness, [studiored] has a series of blog posts describing injection molding design issues, presented from the perspective of how to avoid and address them.

Design of screw bosses demonstrating conflict between molder’s guidelines and vendor’s recommendations. Compromising between both is a science and an art.

Because injection molding involves heat, warp is one issue to be aware of and its principles will probably be familiar to anyone with nitty-gritty experience in 3D printing. Sink marks are also an issue that comes down to differential cooling causing problems, and can ruin a smooth and glossy finish. Both of these play a role in how best to design bosses.

Minimizing and simplifying undercuts (similar to overhangs in 3D printer parlance) is a bit more in-depth, because even a single undercut means much more complex tooling for the mold. Finally, because injection molding depends on reliably molding, cooling, and ejecting parts, designing parts with draft (a slight angle to aid part removal) can be a fact of life.

[studiored] seems to have been working overtime on sharing tips for product design and manufacture on their blog, so it’s worth keeping an eye on it for more additions. We mentioned earlier that much of the manufacturing world revolves around injection molding and sheet metal, so to round out your knowledge we published a primer on everything you need to know about the art and science of bending sheet metal. With a working knowledge of the kinds of design issues that affect these two common manufacturing methods, you’ll have a solid foundation for any forays into either world.

Clever Suction For Robot Arm Automates Face Shield Production

We’re certainly familiar with vacuum grabbers used in manufacturing to pick items up, but this is a bit different. [James Wigglesworth] sent in some renders and demo video (embedded after the break) of the Dexter robot arm and a laser cutter automatically producing face shields.

It’s a nice little bit of automation, where you can see a roll of plastic on the right side of the Glowforge laser cutter feeding into the machine. Once the laser does its thing, the the robot arm reaches in and grabs the newly cut face shield and stacks it in a box neatly for future assembly. There are a lot of interesting parts here, but the fact that the vacuum grabber is doing it’s job without a vacuum air supply is the one we have our eye on.

The vacuum comes from a corrugated sleeve that makes up the suction cup on the end of the robot arm. A rubber band holds a hinged piece over a valve on that sleeve that can be opened or closed by a servo motor. When the cuff is compressed against the face shield, the servo closes the valve, using the tape as a gasket, and the corrugated nature of the cuff creates a vacuum due to the weight of the item it is lifting. This means you don’t need a vacuum source plumbed into the robot, just a wire to power the servo.

The robot arm is of course the design that won the 2018 Hackaday Prize. I comes as no surprise to see the Haddington Dynamics crew setting up a manufacturing line like this one. As we discovered a few weeks ago, 3D printers, laser cutters, and robot arms are part of their microfactory setup and well suited to making PPE to help reduce the shortage during the COVID-19 outbreak.

Continue reading “Clever Suction For Robot Arm Automates Face Shield Production”

Dexter Robot Arm Embraces New Manufacturing With First Micro-Factory

Haddington Dynamics, the company behind the Dexter robot arm that won the 2018 Hackaday Prize, has opened its first microfactory to build robot arms for Australia and Southeast Asia.

You may remember that the combination of Dexter’s makeup and capabilities are what let it stand out among robotics projects. The fully-articulated robot arm can be motion trained; it records how you move the arm and can play back with high precision rather than needing to be taught with code. The high-precision is thanks to a clever encoder makeup that leverages the power of FPGAs to amplify the granularity of its optical encodes. And it embraces advanced manufacturing to combine 3D printed and glue-up parts with mass produced gears, belts,  bearings, and motors.

It’s a versatile robot arm, for a fraction of the cost of what came before it, with immense potential for customization. And did I mention that it’s open source? Continue reading “Dexter Robot Arm Embraces New Manufacturing With First Micro-Factory”

Ask Hackaday: What’s Your Coronavirus Supply Chain Exposure?

In whichever hemisphere you dwell, winter is the time of year when viruses come into their own. Cold weather forces people indoors, crowding them together in buildings and creating a perfect breeding ground for all sorts of viruses. Everything from the common cold to influenza spread quickly during the cold months, spreading misery and debilitation far and wide.

In addition to the usual cocktail of bugs making their annual appearance, this year a new virus appeared. Novel coronavirus 2019, or 2019-nCoV, cropped up first in the city of Wuhan in east-central China. From a family of viruses known to cause everything from the common cold to severe acute respiratory syndrome (SARS) in humans, 2019-nCoV tends toward the more virulent side of the spectrum, causing 600 deaths out of 28,000 infections reported so far, according to official numbers at the time of this writing.

(For scale: the influenzas hit tens of millions of people, resulting in around four million severe illnesses and 500,000 deaths per season, worldwide.)

With China’s unique position in the global economy, 2019-nCoV has the potential to seriously disrupt manufacturing. It may seem crass to worry about something as trivial as this when people are suffering, and of course our hearts go out to the people who are directly affected by this virus and its aftermath. But just like businesses have plans for contingencies such as this, so too should the hacking community know what impact something like 2019-nCoV will have on supply chains that we’ve come to depend on.

Continue reading “Ask Hackaday: What’s Your Coronavirus Supply Chain Exposure?”

A Behind The Scenes Look At Small Scale Production

Back in 2013, [Karl Lautman] successfully got his kinetic sculpture Primer funded on Kickstarter. As the name implies, you press the big red button on the front of the device, and the mechanical counter at the top will click over to a new prime number for your viewing pleasure. Not exactly a practical gadget, but it does look pretty slick.

These days you can still by your very own Primer from [Karl], but he tells us that the sales aren’t exactly putting food on the table. At this point, he considers it more of a self-financing hobby. To illustrate just what goes into the creation of one of these beauties, he’s put together a time-lapse video of how one gets built from start to finish, which you can see after the break.

Even if you’re not interested in adding a mathematics appliance to your home, we think you’ll agree that the video is a fascinating look at the effort that goes into manufacturing a product that’s only slightly north of a one-off creation.

The biggest takeaway is that you really need to be a jack of all trades to pull something like this off. From milling and polishing the metal components to hand-placing the SMD parts and reflowing the board, [Karl] demonstrates the sort of multi-disciplinary mastery you need to have when there’s only one person on the assembly line.

Small scale manufacturing isn’t cheap, and is rarely easy. But stories like this one prove it’s certainly possible if you’re willing to put in the effort.

Continue reading “A Behind The Scenes Look At Small Scale Production”

You Could Be A Manufacturing Engineer If You Could Only Find The Time

Let’s be honest, Ruth Grace Wong can’t teach you how to be a manufacturing engineer in the span of a twenty minute talk. But no-one can. This is about picking up the skills for a new career without following the traditional education path, and that takes some serious time. But Grace pulled it off, and her talk at the 2019 Hackaday Superconference shares what she learned about reinventing your career path without completely disrupting your life to do so.

Ruth got on this crazy ride when she realized that being a maker made her happy and she wanted to do a lot more of it. See wanted to be “making stuff at scale” which is the definition of manufacturing. She took the hacker approach, by leveraging her personal projects to pull back the veil of the manufacturing world. She did a few crowd funding campaigns that exposed her to the difficulties of producing more than one of something. And along the way used revenue from those projects to get training and to seek mentorships.

Continue reading “You Could Be A Manufacturing Engineer If You Could Only Find The Time”