Microwave Ovens: Need More Power? Use Lasers Instead!

You know how it is, you get in late from work, you’ve been stuck in traffic for what seems like an eternity, and you’re hungry. You reach for the microwave meal, and think, if only I didn’t have to wait that three-and-a-half minutes, 900 watts just isn’t enough power. What you need is a laser microwave, and as luck would have it, [Styropyro] has built one, so you don’t have to. No, really, don’t.

After he observed a microwave only operating on a half-wave basis, and delivering power 50% of the time, he attempted to convert it to full-wave by doubling up the high voltage transformer and rectification diodes. While this worked, the poor suffering magnetron didn’t go the full mile, and died somewhat prematurely.

Not to be disheartened, the obvious thing was to ditch the whole concept of cooking with boring old radio waves, and just use a pile of frickin’ lasers instead. Now we’re not sure how he manages to get hold of some of the parts he uses, and the laser array modules look sketchy to say the least, and to be frank, we don’t think they should be easy to get given the ridiculous beam power they can muster.

With the build completed to the usual [Styropryo] level of excellent build quality, he goes on to produce some mouthwatering delicacies such as laser-charred poptart, incinerated steak with not-really-caramelised onions and our favourite laser-popcorn. OK, he admits the beam has way too much power, really should be infrared, and way more diffuse to be even vaguely practical, but we don’t care about practicality round these parts. Who wouldn’t want the excitement of going instantly blind by merely walking into the kitchen at the wrong time?

We’ve covered a fair few microwave oven related hacks before, including a neat microwave kiln, and hacks using microwave parts, such as a janky Jacob’s ladder, but this is probably the first laser microwave we’ve come across. Hopefully the last :)

And remember kids, as [Styropyro] says in pretty much every video on his channel:

All the crazy stuff I’m about to do was done for educational purposes, in fact if you were to try any of this stuff at home, you’d probably die…

Continue reading “Microwave Ovens: Need More Power? Use Lasers Instead!”

Shop Exhaust Fan Salvaged From Broken Microwave

You don’t have to look hard to find a broken microwave. These ubiquitous kitchen appliances are so cheap that getting them repaired doesn’t make economical sense for most consumers, making them a common sight on trash day. But is it worth picking one of them up?

The [DuctTape Mechanic] certainly thinks so. In his latest video, he shows how the exhaust fan from a dead microwave can easily and cheaply be adapted to blow smoke and fumes out of your workshop. While it’s obviously not going to move as much air as some of the massive shop fans we’ve covered over the years, if you’re working in a small space like he is, it’s certainly enough to keep the nasty stuff moving in the right direction. Plus as an added bonus, it’s relatively quiet.

Now as you might expect the exact internal components of microwave ovens vary wildly, so there’s no guarantee your curbside score is going to have the same fan as this one. But the [DuctTape Mechanic] tries to give a relatively high-level overview of how to liberate the fan, interpret the circuit diagram on the label, and wire it up so you can plug it into the wall and control it with a simple switch. Similarly, how you actually mount the fan in your shop is probably going to be different, though we did particularly like how he attached his to the window using a pair of alligator clips cut from a frayed jumper cable.

Got a donor microwave but not in the market for a impromptu shop fan? No worries. We recently saw a dud microwave reborn as a professional looking UV curing chamber that would be the perfect partner for your resin 3D printer. Or perhaps you’d rather turn it into a desktop furnace capable of melting aluminum, copper, or bronze.

Continue reading “Shop Exhaust Fan Salvaged From Broken Microwave”

Modified Microwave Cures Resin Parts With Style

Once you make the leap to resin-based 3D printing, you’ll quickly find that putting parts out in the sun to cure isn’t always a viable solution. The best way to get consistent results is with a dedicated curing chamber that not only rotates the parts so they’re evenly exposed to the light, but allows you to dial in a specific curing time. A beeper that goes off when the part is done would be handy as well. Wait, this is starting to sound kind of familiar…

As you might expect, [Stynus] isn’t the first person to notice the similarities between an ideal UV curing machine and the lowly microwave oven. But his conversion is certainly one of the slickest we’ve ever seen. The final product doesn’t look like a hacked microwave so much as a purpose-built curing machine, thanks in large part to the fact that all of the original controls are still functional.

The big break there came when [Stynus] noticed that the control panel was powered by a one-time programmable PIC16C65B microcontroller. Swapping that out for the pin-compatible PIC16F877A opened up the possibility of writing custom firmware to interface with all the microwave’s original hardware, he just needed to reverse engineer how it was all wired up. It took some time to figure out how the limited pins on the microcontroller ran the LED display and read the buttons and switches at the same time, but we’d say the final result is more than worth the work.

With full control over the microwave’s hardware, all [Stynus] had to do was strip out all the scary high voltage bits (which were no longer functional to begin with) and install an array of UV LEDs. Now he can just toss a part on the plate, spin the dial to the desired curing time, and press a button. In the video below, you can see he’s even repurposed some of the buttons on the control panel to let him do things like set a new default “cook” time to EEPROM.

Compared to the more traditional fused deposition modeling (FDM) 3D printers, resin printing requires a lot of additional post-processing and equipment. You don’t necessarily have to gut your microwave just to cure your prints, but you’d be wise to fully consider your workflow will look like before pulling the trigger on that shiny new printer.

Continue reading “Modified Microwave Cures Resin Parts With Style”

A Microwave Repair Even Mechanical Keyboard Fans Will Love

Microwave oven design and manufacturing have been optimized to the point where the once-expensive appliances are now nearly disposable. Despite the economics, though, some people can’t resist fixing stuff, especially when you get a chance to do it in style. Thus we present this microwave repair with its wholly unnecessary yet fabulous adornments.

The beginning of the end for [dekuNukem]’s dirt cheap second-hand microwave started where many of the appliances begin to fail first — the membrane keyboard. Unable to press the buttons reliably anymore, [dekuNukem] worked out the original keypad’s matrix wiring arrangement and whipped up a little keypad from some pushbutton switches and a scrap of perfboard. Wired into the main PCB, it was an effective and cheap solution, if a bit on the artless side.

To perk things up a bit, [dekuNukem] turned to duckyPad, a hot-swappable macropad with mechanical switches and, of course, RGB LEDs. Things got interesting from here; since duckyPad outputs serial data, an adapater was needed inside the microwave. An STM32 microcontroller and a pair of ADG714 analog switches did the trick, with power pulled from the original PCB.

The finished repair is pretty flashy, and [dekuNukem] now has the only microwave in the world with a clicky keypad. And what’s more, it works.

Continue reading “A Microwave Repair Even Mechanical Keyboard Fans Will Love”

Microwave Modified For Disinfecting

We’re all hopefully a little more concerned about health these days, but with that concern comes a growing demand for products like hand sanitizer, disinfectant, and masks. Some masks are supposed to be single-use only, but with the shortage [Bob] thought it would be good if there were a way to sanitize things like masks without ruining them. He was able to modify a microwave oven to do just that.

His microwave doesn’t have a magnetron anymore, which is the part that actually produces the microwaves for cooking. In its place is an ultraviolet light which has been shown to be effective at neutralizing viruses. The mask is simply placed in the microwave and sterilized with the light. He did have to make some other modifications as well since the magnetron isn’t always powered up when cooking, so instead he wired the light into the circuit for the turntable so that it’s always powered on.

Since UV can be harmful, placing it in the microwave’s enclosure like this certainly limits risks. However, we’d like to point out that the mesh on the microwave door is specifically designed to block microwaves rather than light of any kind, and that you probably shouldn’t put your face up to the door while this thing is operating. Some other similar builds have addressed this issue. Still, it’s a great way to get some extra use out of your PPE.

The Simplest Microwave Receiver

We are used to microwave receivers requiring complex chipsets and exacting PCB layouts, but as [CHZ-soft] has shown, it does not always have to be that way. With nothing more complex than a germanium point-contact diode and an oscilloscope, you can quickly, easily, and cheaply resolve microwave signals, as we are shown with a 2.4GHz wireless mouse.

Of course, there’s nothing new here, what we’re being shown is the very simplest incarnation of a crystal set. It’s a wideband device, with only the length of the wires providing any sort of resonance, but surprisingly with the addition of a very selective cavity resonator it can be turned into a useful receiver. Perhaps the most interesting take-away is that the germanium point-contact diode — once a ubiquitous component — has almost entirely disappeared. In most applications it has been supplanted by the Schottky diode, but even those usually don’t quite possess the speed in the point contact’s home ground of radio detection. This is a shame, because there are still some bench-level projects for which they are rather useful.

So if you have a point contact diode and AM radio doesn’t attract, give it a go as a microwave detector. And if the point contact diode has attracted your interest then you may want to read our piece on Rufus Turner, who brought us its archetype, the 1N34A.

Via Hacker News.

Swap Your Microwave For A High Voltage Stereo

When building a new project, common wisdom suggests to avoid “reinventing the wheel”, or doing something simple from scratch that’s easily available already. However, if you can build a high-voltage wheel, so to speak, it might be fun just to see what happens. [Dan] decided to reinvent not the wheel, but the speaker, and instead of any conventional build he decided to make one with parts from a microwave and over 6,000 volts.

The circuit he constructed works essentially like a Tesla coil with a modulated audio signal as an input. The build uses the high voltage transformer from the microwave too, which steps the 240 V input up to around 6 kV. To modulate that kind of voltage, [Dan] sends the audio signal through a GU81M vacuum tube with the support of a fleet of high voltage capacitors. The antenna connected to the magnetron does tend to catch on fire somewhere in the middle of each song, so it’s not the safest device around even if the high voltage can be handled properly, but it does work better than expected as a speaker.

If you want a high-voltage speaker that (probably) won’t burn your house down, though, it might be best to stick to a typical Tesla coil. No promises though, since working with high voltages typically doesn’t come with safety guarantees.

Continue reading “Swap Your Microwave For A High Voltage Stereo”