Gaze Upon This Omni-directional Treadmill’s Clever LEGO Construction

Want to see some wildly skillful LEGO construction? Check out [Banana Gear Studios]’ omni-directional treadmill which showcases not only how such a thing works, but demonstrates some pretty impressive problem solving in the process. Construction was far from straightforward!

A 9×9 grid of LEGO shafts all turning in unison is just one of the non-trivial design challenges.

In principle the treadmill works by placing an object on a bed of identical, rotating discs. By tilting the discs, one controls which edge is in contact with the object, which in turn controls the direction the object moves. While the concept is straightforward, the implementation is a wee bit more complex. LEGO pieces offer a rich variety of mechanical functions, but even so, making a 9×9 array of discs all rotate in unison turns out to be a nontrivial problem to solve. Gears alone are not the answer, because the shafts in such a dense array are a bit too close for LEGO gears to play nicely.

The solution? Break it down into 3×3 self-contained chunks, and build out vertically with gimbals to take up the slack for gearing. Use small elastic bands to transfer power between neighbors, then copy and paste the modular 3×3 design a few times to create the full 9×9 grid. After that it’s just a matter of providing a means of tilting the discs — which has its own challenges — and the build is complete.

Check out the video below to see the whole process, which is very nicely narrated and illustrates the design challenges beautifully. You may see some similarities to Disney’s own 360° treadmill, but as [Banana Gear Studios] points out, it is a technically different implementation and therefore not covered by Disney’s patent. In an ideal world no one would worry about getting sued by Disney over an educational LEGO project posted on YouTube, but perhaps one can’t be too careful.

Continue reading “Gaze Upon This Omni-directional Treadmill’s Clever LEGO Construction”

Here’s How That Disney 360° Treadmill Works

One thing going slightly viral lately is footage of Disney’s “HoloTile” infinite floor, an experimental sort of 360° treadmill developed by [Lanny Smoot]. But how exactly does it work? Details about that are less common, but [Marques Brownlee] got first-hand experience with HoloTile and has a video all about the details.

HoloTile is a walking surface that looks like it’s made up of blueish bumps or knobs of some kind. When one walks upon the surface, it constantly works to move its occupant back to the center.

Whenever one moves, the surface works to move the user back to the center.

Each of these bumps is in fact a disk that has the ability spin one way or another, and pivot in different directions. Each disk therefore becomes a sort of tilted wheel whose edge is in contact with whatever is on its surface. By exerting fine control over each of these actuators, the control system is able to create a conveyor-belt like effect in any arbitrary direction. This can be leveraged in several different ways, including acting as a sort of infinite virtual floor.

[Marques] found the system highly responsive and capable of faster movement that many would find comfortable. When walking on it, there is a feeling of one’s body moving in an unexpected direction, but that was something he found himself getting used to. He also found that it wasn’t exactly quiet, but we suppose one can’t have everything.

How this device works has a rugged sort of elegant brute force vibe to it that we find appealing. It is also quite different in principle from other motorized approaches to simulate the feeling of walking while keeping the user in one place.

The whole video is embedded just below the page break, but if you’d like to jump directly to [Marques] explaining and showing exactly how the device works, you can skip to the 2:22 mark.

Continue reading “Here’s How That Disney 360° Treadmill Works”

Rat playing DOOM

Rats Learn To Play DOOM In This Automated VR Arena

When we run an article with “DOOM” in the title, it’s typically another example of getting the venerable game running on some minimalist platform. This DOOM-based VR rig for rats, though, is less about hacking DOOM, and more about hacking the rats.

What started as a side project for [Viktor Tóth] has evolved into quite a complex apparatus. At the center of the rig is an omnidirectional treadmill comprised of a polystyrene ball about the size of a bowling ball. The ball is free to rotate, with sensors detecting rotation in two axes — it’s basically a big electromechanical mouse upside down. The rat rides at the top of the ball, wearing a harness to keep it from slipping off. A large curved monitor sits right in front of the rat to display the virtual environment, which is a custom DOOM map.

With the VR rig built, [Viktor] worked on automating the training. A treat dispenser provides the proper motivation, while powered drive wheels engage with the ball to nudge the rat if it gets stuck in the virtual world. [Viktor] says he has trained three rats — [Romero], [Carmack], and [Tom] — to walk down a straight hallway using this automated method. As for the meat of the game — shooting monsters — [Viktor] has that covered too, with a sensor that detects when a rat rears up on its hind legs to register a shot.

Total training time to get the rats to the point seen in the video was about six weeks, and [Viktor] reports the whole thing cost him about $2000. That’s a lot of time and money, but the results are pretty interesting. If you’re more interested in minimalist DOOM builds, we understand — check out DOOM on a lightbulb, or a thermostat, or even a GPS.

Continue reading “Rats Learn To Play DOOM In This Automated VR Arena”

Rolling Out A New Robot Arm

A lot of great scientific breakthroughs come through imitating nature, but technology often runs up against limits in certain areas. This is particularly evident in robotics, where it takes a lot of effort (and cost) to build a robot which can effectively manipulate heavy objects but not crush others which are more delicate. For that, a research group has looked outside of nature, developing a robotic grasper which uses omnidirectional wheels to grab various objects.

The robot hand is composed of three articulating fingers with fingertips which are able to actively manipulate the object that the hand is holding. With static fingertips, it is difficult to manipulate an object in the hand itself, but with the active surfaces at the fingertips it becomes easier to rotate the object without setting it down first or dropping it.

The project is much more than designing the robot hand itself, too. The robot uses calculated kinematics to manipulate the objects as well, but a second mode was also tried where the robot was able to “learn” how to handle the object it was given. The video linked below shows both modes in operation, with interesting results. If you prefer more biologically-inspired robot arms, though, there are always novel designs based on non-humans.

Continue reading “Rolling Out A New Robot Arm”

Watch These Two Robots Cooperate On A 3D Print

Putting a 3D printer on a mobile robotic platform is one thing, but two robots co-cooperatively printing a large object together is even more impressive. AMBOTS posted the video on Twitter and we’ve embedded it below.

The robots sport omnidirectional wheels and SCARA format arms, and appear to interact with some kind of active tabletop to aid positioning. The AMBOTS website suggests that the same ideas could be used for other tasks such as pick and place style assembly work, and the video below of co-operative 3D printing is certainly a neat proof of concept.

As a side note: most omni wheels we see (such as the ones on these robots) are of the Mecanum design but there are other designs out there you may not have heard of, such as the Liddiard omnidirectional wheel.

Continue reading “Watch These Two Robots Cooperate On A 3D Print”

Step The Halbach From My Magnets

[Klaus Halbach] gets his name attached to these clever arrangements of permanent magnets but the effect was discovered by [John C. Mallinson]. Mallinson array sounds good too, but what’s in a name? A Halbach array consists of permanent magnets with their poles rotated relative to each other. Depending on how they’re rotated, you can create some useful patterns in the overall magnetic field.

Over at the K&J Magnetics blog, they dig into the effects and power of these arrays in the linear form and the circular form. The Halbach effect may not be a common topic over dinner, but the arrays are appearing in some of the best tech including maglev trains, hoverboards (that don’t ride on rubber wheels), and the particle accelerators they were designed for.

Once aligned, these arrays sculpt a magnetic field. The field can be one-sided, neutralized at one point, and metal filings are used to demonstrate the shape of these fields in a quick video. In the video after the break, a powerful magnetic field is built but when a rare earth magnet is placed in the center, rather than blasting into one of the nearby magnets, it wobbles lazily.

Be careful when working with powerful magnets, they can pinch and crush, but go ahead and build your own levitating flyer or if you came for hoverboards, check out this hoverboard built with gardening tools.

 

Continue reading “Step The Halbach From My Magnets”

Harrier-like Tilt Thrust In Multirotor Aircraft

A traditional quadcopter is designed to achieve 6 degrees of freedom — three translational and three rotational — and piloting these manually can prove to be a challenge for beginners. Hexacopters offer better stability and flight speed at a higher price but the flight controller gets a bit more complex.

Taking this to a whole new level, the teams at the Swiss Federal Institute of Technology (ETH Zürich) and Zurich University of the Arts (ZHDK) have come together to present a hexacopter with 6 individually tiltable axes. The 360-degree tilt in rotors allows for a whopping 12-degrees of freedom in flight and allows the UAV to fly in essentially any direction including parallel to walls.

In addition to the acrobatic capabilities of the design, the team has done some testing with autonomous control using external cameras. Their blog contains videos of their testing at various stages and it interesting to see the project evolve over a short span of nine months. Check out the video below of the prototype in action.

With Amazon delivering packages via drone and getting patents for parachute labels, UAV design is evolving faster now than ever. We can’t wait to see where this 12 DOF takes the state of the art. Continue reading “Harrier-like Tilt Thrust In Multirotor Aircraft”