Piezoelectric Antennas For Very, Very Low Frequencies

If you want to talk about antennas, the amateur radio community has you covered, with one glaring exception. Very low frequency and Extremely Low Frequency radio isn’t practiced very much, ultimately because it’s impractical and you simply can’t transmit much information when your carrier frequency is measured in tens of Hertz. There is more information on Extremely Low Frequency radio in Michael Crichton’s Sphere than there is in the normal parts of the Internet. Now there might be an easier way to play with VLF radiation, thanks to developers at the National Accelerator Laboratory. They’ve developed a piezoelectric transmitter for very long wavelengths.

Instead of pushing pixies through an antenna, this antenna uses a rod-shaped crystal of lithium niobate, a piezoelectric material. An AC voltage is applied to the rod makes it vibrate, and this triggers an oscillating electric current flow that’s emitted as VLF radiation. The key is that it’s these soundwaves bouncing around that define the resonant frequency, and the speed of sound in lithium niobate is a lot slower than the speed of light, but they’re translated into electric signals because of its piezoelectricity. For contrast, if this were a wire quarter-wave antenna it would be tens of kilometers long.

The application for this sort of antenna is ideally for where regular radio doesn’t work. Radio doesn’t work underwater, but nuclear subs trail an antenna out of the back to receive messages using Extremely Low Frequency radio. A walkie talkie doesn’t work in a mine, and this could potentially be used there. There is a patent for this piezoelectric antenna, so if anyone knows of a source of lithium niobate, put a link in the comments.

We’ve seen this trick before to make small antennas even smaller, but this is the first time we’ve seen it used in the VLF band, where it’s arguably even more impressive.

Piezoelectric Gyro Shows How They Rolled Back In The Day

There’s no doubting the wonders that micro-electromechanical systems (MEMS) technology have brought to the world. With MEMS chips, your phone can detect the slightest movement, turning it into a sensitive sensor platform that can almost anticipate what you’re going to do next. Actually, it’s kind of creepy when you think about it.

But before nano-scale MEMS inertial sensing came along, lots of products needed to know their ups from their downs, and many turned to products such as this vibrating piezoelectric gyroscope that [Kerry Wong] found in an old camcorder. The video below shows a teardown of the sensor, huge by MEMS standards but still a marvel of micro-engineering. The device is classified as a Coriolis vibratory gyroscope (CVG) which, as the name implies, uses the Coriolis effect to sense rotation. In this device, [Kerry] found that a long, narrow piezoelectric element spans the long axis of the sensor, suspended from what appears to be four flexible arms. [Kerry] probed the innards of the sensor while powered up and discovered a 22 kHz signal on the piezo element; this vibrates the bar in one plane so that when it rotates, it exerts a force on the support arms that can be detected. Indeed, [Kerry] hooked the output of the sensor to a wonderfully old-school VOM whose needle wiggled with the slightest movement of the sensor.

Sadly, MEMS made this kind of sensor obsolete, but we appreciate the look under the hood. And really, MEMS chips are using the same principle to detect motion, just on a much smaller scale. Want the MEMS basics? [Al] has you covered.

Continue reading “Piezoelectric Gyro Shows How They Rolled Back In The Day”

PTPM Energy Scavenger Aims For Maintenance-Free Sensor Nodes

[Mile]’s PTPM Energy Scavenger takes the scavenging idea seriously and is designed to gather not only solar power but also energy from temperature differentials, vibrations, and magnetic induction. The idea is to make wireless sensor nodes that can be self-powered and require minimal maintenance. There’s more to the idea than simply doing away with batteries; if the devices are rugged and don’t need maintenance, they can be installed in locations that would otherwise be impractical or awkward. [Mile] says that goal is to reduce the most costly part of any supply chain: human labor.

The prototype is working well with solar energy and supercapacitors for energy storage, but [Mile] sees potential in harvesting other sources, such as piezoelectric energy by mounting the units to active machinery. With a selectable output voltage, optional battery for longer-term storage, and a reference design complete with enclosure, the PPTM Energy Scavenger aims to provide a robust power solution for wireless sensor platforms.

A Vacuum Tube And Barbecue Lighter X-Ray Generator

A certain subset of readers will remember a time when common knowledge held that sitting too close to the TV put you in mortal peril. We were warned to stay at least six feet back to avoid the X-rays supposedly pouring forth from the screen. Nobody but our moms believed it, so there we sat, transfixed and mere inches from the Radiation King, working on our tans as we caught up on the latest cartoons. We all grew up mostly OK, so it must have been a hoax.

Or was it? It turns out that getting X-rays from vacuum tubes is possible, at least if this barbecue lighter turned X-ray machine is legit. [GH] built it after playing with some 6J1 rectifier tubes and a 20-kV power supply yanked from an old TV, specifically to generate X-rays. It turned out that applying current between the filament and the plate made a Geiger counter click, so to simplify the build, the big power supply was replaced with the piezoelectric guts from a lighter. That worked too, but not for long — the tube was acting as a capacitor, storing up charge each time the trigger on the lighter was pulled, eventually discharging through and destroying the crystal. A high-voltage diode from a microwave oven in series with the crystal as a snubber fixed the problem, and now X-rays are as easy as lighting a grill.

We have to say we’re a wee bit skeptical here, and would love to see a video of a test. But the principle is sound, and if it works it’d be a great way to test all those homebrew Geiger counters we’ve featured, like this tiny battery-powered one, or this one based on the venerable 555 timer chip.

Building A Plate Reverb On The Cheap

For those who don’t spend their free time creating music with experimental audio effects, a plate reverb is essentially a speaker. It just happens to be, by design, a rather poor one. Rather than using a paper cone for a diaphragm like a traditional speaker, the plate reverb uses as you might guess, a metal plate. As the plate vibrates along with the source audio, a set of piezoelectric pickups convert that to an output. The end result is that audio fed into the plate reverb comes out with a nice echo effect.

But despite their relative simplicity, a plate reverb costs thousands of dollars. They’re so expensive that the majority of people just emulate the effect in software. But it doesn’t have to be that way. [Sammartino] and an audio engineer friend recently came up with a detailed guide for building a plate reverb that cost about 10% of commercially available models.

The construction is fairly simple. A wooden frame is built, and eight hooks are installed around the edges. The plate is suspended between these hooks using guitar strings, which holds it tight but with enough give to vibrate along with the tunes. Another board is attached across the center of the frame to support the electronics: a transducer to vibrate the plate, and two piezo pickups to convert that to an audio signal, and a couple jacks and some wiring to tie it all together.

For a different take on the DIY plate reverb, check out this one we covered all the way back in 2013. If you’re in the market for something a bit larger, we’ve got you covered there as well.

Piezomagnetic Trick Shrinks 2.5 GHz Antennas

To a ham radio operator used to “short”-wave antennas with lengths listed in tens of meters, the tiny antennas used in the gigahertz bands barely even register. But if your goal is making radio electronics that’s small enough to swallow, an antenna of a few centimeters is too big. Physics determines plausible antenna sizes, and there’s no way around that, but a large group of researchers and engineers have found a way of side-stepping the problem: resonating a nano-antenna acoustically instead of electromagnetically.

Normal antennas are tuned to some extent to the frequency that you want to pick up. Since the wavelength of a 2.5 GHz electromagnetic wave in free space is 120 cm mm, most practical antennas need a wire in the 12-60 cm mm range to bounce signals back and forth. The trick in the paper is to use a special piezomagnetic material as the antenna. Incoming radio waves get quickly turned into acoustic waves — physical movement in the nano-crystals. Since these sound waves travel a lot slower than the speed of light, they resonate off the walls of the crystal over a much shorter distance. A piezoelectric film layer turns these vibrations back into electrical signals.

Ceramic chip antennas use a similar trick. There, electromagnetic waves are slowed down inside the high-permittivity ceramic. But chip antennas are just slowing down EM waves, whereas the research demonstrated here is converting the EM to sound waves, which travel many orders of magnitude slower. Nice trick.

Granted, significant material science derring-do makes this possible, and you’re not going to be fabricating your own nanoscale piezomagnetic antennas any time soon, but with everything but the antenna getting nano-ified, it’s exciting to think of a future where the antennas can be baked directly into the IC.

Thanks [Ostracus] for the tip in the comments of this post on antenna basics. Via [Science Magazine].

Measuring Tiny Masses Acoustically

How do you measure the mass of something really, really tiny? Like fish-embryo tiny. There aren’t many scales with the sensitivity and the resolution to make meaningful measurements in the nanogram range, so you’ve got to turn to other methods, like measuring changes in the resonant frequency of a glass tube. And that turns out to be cheap and easy for the home gamer to reproduce.

In a recent scholarly paper, [William Grover] et al from the University of California Riverside outline the surprisingly simple and clever method of weighing zebrafish embryos, an important model organism used in all sorts of developmental biology and environmental research. [Grover]’s method is a scaled-up version of a suspended microchannel resonator (SMR), a microelectromechanical device that can measure the mass of single cells or even weigh a virus particle. Rather than etch the resonator out of silicon, a U-shaped glass tube is vibrated by a piezoelectric speaker and kept at its resonant frequency by feedback from a cheap photointerrupter. When an embryo is pumped into the tube, the slight change in mass alters the resonant frequency of the system, which is easily detected by the photointerrupter. The technique can even be leveraged to measure volume and density of the embryos, and all for about $12 in parts.

In the lab, [Grover]’s team uses a data acquisition card and LabVIEW to run the resonant loop, but there’s no reason a DIY version of this couldn’t use an Arduino. In fact, tipster [Douglas Miller] expects someone out there will try this, and would appreciate hearing the details. You can ping him on his hackaday.io page.