Building A Tiny Finger Plane For Detailed Work

A plane is a tool familiar to all woodworkers, used to shape a workpiece by hand by shaving away material. Regular planes are two-handed tools available at all good hardware stores. For finer work, a finger plane can be useful, though harder to find. Thankfully, [Daniel] put together a video showing how to make your own.

[Daniel]’s build relies on stabilized wood, useful for its density and consistent quality, though other woods work too. A 6″ pen blank is enough to make a pair of matching finger planes. A block and two side panels are cut out from the material, with attention paid to making sure everything remains square for easy assembly. The parts are glued together with a block set at the desired cutting angle for the plane. With the assembly then tidied up on the bandsaw and sander, [Daniel] installs the cutting blade. This can be made from a larger standard plane blade, or a cutdown chisel can be pressed into service. The blade is held in place with a wooden wedge beneath a metal pin. The pin itself is crafted from an old drill bit, cut down to size.

It’s a useful tool for doing fine plane work, for which a full-size tool would be ungainly. We can imagine it proving particularly useful in producing accurate scale models in smaller sizes. If you’re big into woodworking, consider giving your tools a good sharpen on the cheap, too. Video after the break.

Continue reading “Building A Tiny Finger Plane For Detailed Work”

Fuel Cell Drone Aims For Extended Flight Times

The RC world was changed forever by the development of the lithium-polymer battery. No longer did models have to rely on expensive, complicated combustion engines for good performance. However, batteries still lack the energy density of other fuels, and so flying times can be limited. Aiming to build a drone with impressively long endurance, [Игорь Негода] instead turned to hydrogen power.

The team fitted a power meter to the plane, aiming a camera at it to measure power draw during flight.

With a wingspan of five meters, and similar length, the build is necessarily large in order to carry the hydrogen tank and fuel cell that will eventually propel the plane, which uses a conventional brushless motor for propulsion. Weighing in at 6 kilograms, plenty of wing is needed to carry the heavy components aloft. Capable of putting out a maximum of 200W for many hours at a time, the team plans to use a booster battery to supply extra power for short bursts, such as during takeoff. Thus far, the plane has flown successfully on battery power, with work ongoing to solve handling issues and determine whether the platform can successfully fly on such low power.

We’re eager to see how the project develops, particularly in regards to loiter time. We can imagine having a few pilots on hand may be necessary with such a long flight time planned — other drones of similar design have already surpassed the 60-minute mark. Video after the break.

Continue reading “Fuel Cell Drone Aims For Extended Flight Times”

Tracking Boats And Ships In Real Time At The Same Time

Software-defined radio came on the hacker scene in a big way less than a decade ago thanks to the discovery that a small USB-based TV tuner dongle could be used for receiving all kinds of radio transmissions. Two popular projects from that era are tracking nearby airplanes and boats in real time. Of course, these projects rely on different frequencies and protocols, but if you live in a major port city like [Ian] then his project that combines both into a single user interface might be of interest.

This project uses an RTL-SDR dongle for the marine traffic portion of the project, but steps up to a FlightAware Pro dongle for receiving telemetry from airplanes. Two separate antennas are needed for this, and all of the information is gathered and handled by a pair of Raspberry Pis. The Pis communicate with various marine and air traffic databases as well as handles the custom user interface that knits both sets of information together. This interface was custom-built from a previous project of his and was repurposed slightly to fit the needs of this one.

This is a great project that goes into a lot of interesting detail about how the web traffic moves and how the UI works, so even if you’re not into software-defined radio it might be worth a look. However, it’s also worth noting that it hasn’t been easier to set up a system like this thanks to the abundance and low price of RTL-SDR dongles and the software tools that make setting them up a breeze.

80 Years From Invention, China Is Struggling With Jet Engines

The jet engine has a long and storied history. Its development occurred spontaneously amongst several unrelated groups in the early 20th Century. Frank Whittle submitted a UK patent on a design in 1930, while Hans von Ohain begun exploring the field in Germany in 1935. Leading on from Ohain’s work, the first flight of a jet-powered aircraft was in August 27, 1939. By the end of World War II, a smattering of military jet aircraft had entered service, and the propeller was on the way out as far as high performance aviation is concerned.

With the invention of the jet engine so far in the past, one could be forgiven for thinking that the technology has long been mastered around the world. However, recent reports show that’s not the case. China is a great example, facing issues with the development of jet engines for their indigenous military aircraft.

Closely Guarded Secrets

China’s development of ballpoint pen tips was a national news story in 2017. Source: Xinhua

In the age of the Internet and open source, technology moves swiftly around the world. In the consumer space, companies are eager to sell their product to as many customers as possible, shipping their latest wares worldwide lest their competitors do so first. In the case of products more reliant on infrastructure, we see a slower roll out. Hydrogen-powered cars are only available in select regions, while services like media streaming can take time to solve legal issues around rights to exhibit material in different countries. In these cases, we often see a lag of 5-10 years at most, assuming the technology survives to maturity.

In most cases, if there’s a market for a technology, there’ll be someone standing in line to sell it. However, some can prove more tricky than others. The ballpoint pen is one example of a technology that most of us would consider quaint to the point of mediocrity. However, despite producing over 80% of the world’s ballpoint pens, China was unable to produce the entire pen domestically. Chinese manufactured ballpoint tips performed poorly, with scratchy writing as the result. This attracted the notice of government officials, which resulted in a push to improve the indigenous ballpoint technology. In 2017, they succeeded, producing high-quality ballpoint pens for the first time.

The secrets to creating just the right steel, and manipulating it into a smooth rolling ball just right for writing, were complex and manifold. The Japanese, German, and Swiss companies that supplied China with ballpoint tips made a healthy profit from the trade. Sharing the inside knowledge on how it’s done would only seek to destroy their own business. Thus, China had to go it alone, taking 5 years to solve the problem.

There was little drive for pen manufacturers to improve their product; the Chinese consumer was more focused on price than quality. Once the government made it a point of national pride, things shifted. For jet engines, however, it’s somewhat of a different story.

Continue reading “80 Years From Invention, China Is Struggling With Jet Engines”

Excercise Ball Makes A Passable Landing Gear

Exercise balls are great for many things, from amusing children to breaking everything in your living room, often in quick succession. After seeing some German WWII prototype aircraft with wild landing gear designs, the [FliteTest] crew decided to see whether they could use an exercise ball to build a plane ready for even the bumpiest of runways.

Comparisons to the Gee Bee R-1 abound in the video.

The exercise ball created some constraints on the design, due to its weight and the large amount of drag it creates. To work around this, the design features a foamcore and carbon fibre construction to save weight. The exercise ball is placed front and center, serving as both the nose and landing gear of the aircraft. V-tails are used to place the rear control surfaces outside of the shadow of the ball, to help maintain control authority. Initial tests of the airframe showed handling problems. The team solved this by using a pair of gyro stabiliser boards of their own design, named Aura.

With the issues solved, the final aircraft is hilarious to behold. The huge, bouncing ball makes an excellent landing gear, able to launch off lumps and bumps and even skim over water. We’ve seen [FliteTest] get up to other escapades in the past, too. Video after the break.

[Thanks to Baldpower for the tip!]

Continue reading “Excercise Ball Makes A Passable Landing Gear”

An All-Electric Plane Takes To The Skies

With climate protests and airline strikes occurring around the world, there is more awareness than ever before for the necessity of environmental sustainability. More importantly, there is more discussion around the immense carbon footprint left by the airline industry, perhaps one of the largest contributors to climate change worldwide.

The Slovenian-based Pipistrel ALPHA Electro is one of the leading electric planes today, with bragging rights as the world’s first mass-produced electric aircraft. While NASA may have announced their X-57 Maxwell, the plane is still undergoing testing for its first planned flight in 2020. The ALPHA Electro, marketed as a trainer plane for flight students and recreational flyers, features a 34’6″ wingspan and low running costs.

The two-person flyer is equipped with a 60 kW electric motor, with a cruising speed of about 157 km/hr. A 21 kW battery provides the plane with enough energy for a 55 minute flight, with a half hour reserve, and takes about an hour to charge back up. An additional perk of flying an electric plane is the low noise and zero CO2 emissions, which allows the flights to take place near large cities with exhaust and noise emission standards.

With airplanes, a majority of the fuel is used for takeoff and landing, making short haul flights particularly troublesome – compare 107 lbs CO2 flying from New York to Boston versus 62 lbs CO2 driving. While refraining from frequent flights is still the best idea for reducing your carbon footprint, we’re hopefully headed towards more environmentally-friendly options for air travel.

Check out the ALPHA Electro’s teaser video below.

Continue reading “An All-Electric Plane Takes To The Skies”

Gliding Back Home From 60,000ft

If you want to play around with high altitudes, weather balloons are the way to go. With a bit of latex and some helium, it’s possible to scrape up against the edge of space without having to start your own rocketry program. [Blake] was interested in doing just this, and decided to build a near space glider which could capture the journey.

There are certain challenges involved with this flight regime, which [Blake] worked to overcome. There was significant investment in the right antennas and radio hardware to enable communication and control of the aircraft at vast distances. Batteries were chosen for their ability to work at low temperatures in the high altitude environment, and excess heat from the transmitters was use to keep them warm.

The glider was also fitted with an Ardupilot Mega which would control the gliders’s flight after separation from the lift balloon. [Blake] had some success flying the aircraft at 60,000 feet, but found that due to communications issues, the autopilot was doing a better job. The initial flight was largely a success, with the glider landing just 9 miles off target due to headwinds.

We’ve seen glider builds on other autopilot platforms, too. Video after the break.

Continue reading “Gliding Back Home From 60,000ft”