Hardware Keymapper Routes Through Raspberry Pi

There are a lot of keyboards to choose from, and a quick trip through some of the forums will quickly show you how fanatical some people can be about very specific styles or switches. [Crdotson] doesn’t seem to be too far down the rabbit hole in that regard, but he does have a keyboard that he really likes despite one small quirk: it’s built for Mac, and some of the modifier keys aren’t laid out correctly for Windows. Since Windows has limited (and poor) options for software keymapping, he took an alternative route and built a keymapper in hardware instead.

The build uses a Raspberry Pi as a go-between from the keyboard to his computer. The Pi watches the USB bus using usbmon, which allows inspection of the packets and can see which keys have been pressed. It then passes those keypresses through to the computer. His only modification to the keyboard mapping is to swap the Alt and Super (Windows) keys for his keyboard of choice, although using this software would allow any other changes to be made as well. Latency is only on the order of a few microseconds, which is not noticeable for normal use cases.

While we have seen plenty of other builds around that can map keyboards in plenty of custom ways, if you don’t have the required hardware for a bespoke solution it’s much more likely that there’s a Raspberry Pi laying around that can do the job instead. There are a few issues with the build that [crdotson] is planning to tackle, though, such as unplugging the device while a key is being pressed, which perpetually sends that keystroke to the computer without stopping. But for now it’s a workable solution for his problem.

USB Webcams Out Of Stock? Make One With A Raspberry Pi And HQ Camera Module

More people working from home has had an impact on the cost and availability of USB webcams, so [Jeff Geerling] got around the issue with a DIY solution that rang in around $100. It consists of a Raspberry Pi and HQ camera module acting as a USB webcam, and there is no messy streaming of ffmpeg over the network masquerading as a camera device or anything. It works just as a USB camera should.

[Jeff] chose a Raspberry Pi Zero and HQ camera module for his unit, making a tidy package that might not be quite as small as commercial webcams, but is certainly perfectly respectable as a USB camera. That being said, there are a few drawbacks, namely the lack of a microphone or autofocus, latency issues at higher resolutions, and the need to shut down the Pi cleanly.

Check out the GitHub repository for everything needed to set up your own, including a complete hardware list and some options for mounting. [Jeff] also tested whether the camera would work with the new keyboard-embedded Raspberry Pi 400, and it absolutely does. Embedded below is a video walkthrough and demonstration of the whole project, so check it out.

Continue reading “USB Webcams Out Of Stock? Make One With A Raspberry Pi And HQ Camera Module”

A Crust-Cutting, Carrot-Chopping Robot

[3DprintedLife] sure does hate bread crust. Not the upper portion of homemade bread, mind you — just that nasty stuff around the edges of store-bought loaves. Several dozen hours of CAD later, [3DprintedLife] had themselves a crust-cutting robot that also chops vegetables.

This De-Cruster 9000 is essentially a 2-axis robotic guillotine over a turntable. It uses a Raspberry Pi 4 and OpenCV to seek and destroy bread crusts with a dull dollar store knife. Aside from the compact design, our favorite part has to be the firmware limit switches baked into the custom control board. The stepper drivers have this fancy feature called StallGuard™ that constantly reads the back EMF to determine the load the motor is under. If you have it flag you right before the motor hits the end of the rail and stalls, bam, you have a firmware limit switch. Watch it remove crusts and chop a lot of carrots with faces after the break.

This is far from the dangerous-looking robot we’ve seen lately. Remember this hair-cutting contraption?

Continue reading “A Crust-Cutting, Carrot-Chopping Robot”

Chess Computer Retires To Play Jazz

Years ago, [Leo Neumann]’s girlfriend gave him a 1970s chess computer game that was missing almost everything but the super cool clicky keyboard. Noting the similarity of chess move labeling to chord notation, [Leo] decided to turn it into something even nerdier — a jazz chord game where you jam with the computer.

To play the game, you and the computer take turns entering jazz chords that progress musically from the last one played. The hardware is simple — a Raspberry Pi Zero and a WM8960 audio hat with amplifier in speakers. [Leo] also put in a slightly larger display than the original and printed a new bottom half for the case. We love the look of this build, especially the groovy custom line font [Leo] designed.

On the software side, [Leo] made a Python prototyping environment using PYO Module and Kivy UI. Not content with other approaches to tonal consonance, [Leo] played a couple thousand chords and rated them according to their progressive harmony. Shake out those jazz hands and check it out after the break.

Want to play chess with computers? Make Alexa your go-between.

Continue reading “Chess Computer Retires To Play Jazz”

True Networked KVM Without Breaking The Bank

For administering many computers at once, an IP KVM is an invaluable piece of equipment that makes it possible to get the job done over the network without having to haul a keyboard, monitor, and mouse around to each computer. The only downside is that they can get pricey, unless of course you can roll one out based on the Raspberry Pi and the PiKVM image for little more than the cost of the Pi itself.

The video linked below shows how to set all of this up, which involves flashing the image and then setting up the necessary hardware. The build shows an option for using HDMI over USB, but another option using the CSI bus would allow for control over options like video resolution and color that a USB HDMI dongle doesn’t allow for. It also makes it possible to restart the computer and do things like configure BIOS or boot from removable media, which is something that would be impossible with a remote desktop solution like VNC.

The creator of PiKVM was mentioned in a previous post about the creation of the CSI bus capture card, and a Pi hat based on this build will be available soon which would include options for ATX controls as well. Right now, though, it’s possible to build all of this on your own without the hat, and is part of what makes the Pi-KVM impressive, as well as its very low cost.

Continue reading “True Networked KVM Without Breaking The Bank”

Easy Device Configuration For Your Pi Projects

We’re all familiar with a typical configuration sequence for a new mass-market IoT device. Turn it on for the first time and it exposes a temporary Wi-Fi network, connect to that network and open a Web page for device configuration. Wouldn’t it be useful to be able to incorporate that functionality into your own projects without having to write it yourself! Happily now thanks to [Peter Walsh] you can, with his AppDaemon project for the Raspberry Pi.

At its heart is  a set of Perl scripts that run whatever your software is, then monitor a GPIO. A button press toggling the GPIO stops the application and fires up the access point and web server. Handily the code can all be found in a GitHub repository, and there is a run-through of the features in a video that we’ve placed below the break. It’s not something that will appeal to everybody, but for anyone who has to pass their work onto people who can’t dive into a config file and break out the editor, it should be a particularly useful addition to the armoury.

Continue reading “Easy Device Configuration For Your Pi Projects”

Haunted TV Does Mirror Scares With Raspberry Pi

Hallowe’en may be over for another year, but that just means you’ve got more time to prepare your build for next time. [gocivici] has a fun twist on the classic mirror scare that might be just up your alley.

The build starts with an old black and white TV, hooked up to a Raspberry Pi 3. The Pi films the scene in front of the television through a camera secreted into the screen’s headphone jack, and displays it on screen. The camera feed is run through OpenCV, which runs face and eye detection algorithms to determine when a person is looking at the screen. Based on a basic timer script, when a viewer has looked long enough, a ghostly apparition is displayed, lurking behind the viewer. When the user looks over their shoulder, the apparition quickly disappears, as per the classical horror trope.

It’s a fun build that would make an excellent set piece for your next Hallowe’en party. For extra effect, be sure to secret it down a dark hallway with some IR LEDs illuminating the scene for the camera only. If you prefer something with a little more whimsy, consider these animated singing pumpkins instead. Video after the break.

Continue reading “Haunted TV Does Mirror Scares With Raspberry Pi”