Taser Ring Is Scary Jewelry You Shouldn’t Build

Officially, the term “taser” refers to a particular brand of projectile-firing electric stun gun. However, the word is also colloquially used to refer to just about any device intended for delivering electric shocks to an adversary. The taser ring from [Penguin DIY] definitely fits that description, though we’d strictly advise you not to consider building this at home.

The build is a hacky one. An arc generator circuit was pulled out from a jet cigarette lighter, and reconfigured to fit in a small ring-based form factor. It was hooked up with a power switch and a small bank of 30 mAh lithium polymer cell for power, and a compact USB-C charger board was installed to keep the batteries juiced. The electronics were then delicately assembled into a ring-shaped mold, which was injected with resin to produce the final ring. Once cast, a pair of small metal electrodes were installed on the outside. Activating the taser function is as simple as squeezing the ring—easy to do just by making a fist.

We’ve seen projects like these before; our advice is usually to avoid them unless you really know what you’re doing. Whether you end up shocking someone else or accidentally shocking yourself, the results tend to be bad. The latter seems particularly easy to do if you’re wearing this thing on your finger. Given it’s a ring, don’t expect to be able to pull it off in a hurry, either. It’s hard to see how that ends well.

Continue reading “Taser Ring Is Scary Jewelry You Shouldn’t Build”

Tech In Plain Sight: Tasers Shooting Confetti

One of the standard tropes in science fiction is some kind of device that can render someone unconscious — you know, like a phaser set to stun. We can imagine times when being aggressively knocked out would lead to some grave consequences, but — we admit — it is probably better than getting shot. However, we don’t really have any reliable technology to do that today. However, if you’ve passed a modern-day policeman, you’ve probably noticed the Taser on their belt. While this sounds like a phaser, it really isn’t anything like it. It is essentially a stun gun with a long reach thanks to a wire with a dart on the end that shoots out of the gun-like device and shocks the target at a distance. Civilian Tasers have a 15-foot long wire, while law enforcement can get longer wires. But did you know that modern Tasers also fire confetti?

A Taser cartridge and some AFIDs

It sounds crazy, and it isn’t celebratory. The company that makes the Taser — formerly, the Taser company but now Axon — added the feature because of a common complaint law enforcement had with the device. Interestingly, many things that might be used in comitting a crime are well-understood. Ballistics can often identify that a bullet did or did not come from a particular weapon, for example. Blood and DNA on a scene can provide important clues. Even typewriters and computer printers can be identified by variations in their printing. But if you fire a taser, there’s generally little evidence left behind.

Continue reading “Tech In Plain Sight: Tasers Shooting Confetti”

You Should Not Try These Taser NERF Darts

For most of us, a good part of our childhood involved running around someone’s backyard (or inside the house) trying to score hits with a toy NERF gun. The fun level was high and the risk of personal injury was low. Now that we’re all mostly adults, it’s probably time to take our NERF game to the next level with some risk of serious personal harm.

In an effort to help his brother get back at him for being somewhat of a bully in their youth, [Allen Pan] gifted him with an upgraded NERF gun. Specifically, one with darts that pack a punch. Each of the “Elite” darts was equipped with a 300 V capacitor packed into the interior of the dart. New tips were 3D printed with special metal tips that allow the capacitor to discharge upon impact.

Besides the danger, there’s a good bit of science involved. Parts were scavenged from a new (and surprisingly expensive) disposable camera, and a customized circuit was constructed around the barrel of the dart gun that allows the darts to charge up when they’re loaded. It’s an impressive build that would be relatively simple to reconstruct for yourself, but it’s probably not the worst thing we’ve seen done with high voltage and a few small capacitors.

Thanks to [Itay] for the tip!

Continue reading “You Should Not Try These Taser NERF Darts”

A Thoughtful Variety Of Projects And Failures

Our friends at [The Thought Emporium] have been bringing us delightful projects but not all of them warrant a full-fledged video. What does anyone with a bevy of small but worthy projects do? They put them all together like so many mismatched LEGO blocks. Grab Bag #1 is the start of a semi-monthly video series which presents the smaller projects happening behind the scenes of [The Thought Emporium]’s usual video presentations.

Solar eclipse? There are two because the first was only enough to whet [The Thought Emporium]’s appetite. Ionic lifters? Learn about the favorite transformer around the shop and see what happens when high voltage wires get too close. TEA lasers? Use that transformer to make a legitimate laser with stuff around your house. Bismuth casting? Pet supply stores may have what you need to step up your casting game and it’s a total hack. Failures? We got them too.

We first covered ionocraft (lifters) awhile back. TEA lasers have been covered before. Casting is no stranger to hackaday but [The Thought Emporium] went outside the mold with their technique.

Continue reading “A Thoughtful Variety Of Projects And Failures”

Quick And Dirty Shock Gloves

[JLaservideo] has created some cool high-voltage gloves and uploaded a video on YouTube showing you how to get your mitts on a pair of your own. Using some very simple parts, he manages to make some decent sparks.

At the heart of this project is one of those new-fangled arc lighters which normally use some type of voltage multiplier circuit to function. The rest of the build is just wire, glue, aluminum foil, a switch, and paintball gloves.

Using the tip of each finger as an electrode, anything he touches will complete the circuit, creating high-voltage arcs. The demo of burning through paper is pretty neat, although we’ll admit we’re at a loss to think of what other tricks you could pull off with electrified fingertips. Anyone?

Continue reading “Quick And Dirty Shock Gloves”

Extreme Wire Buzz Game

Remember that old buzz wire game? Kinda like Operation, where you have to do a dexterous task without touching the walls… Well here’s a fun twist on it — what if you throw a 4 million volt stun gun into the mix?

That’s right, [Mike] was given a taser flashlight, and he had this brilliant idea to make a game out of it. The game features three metal wire sections which get progressively harder, with higher risk too! Using the handle, you have to guide an eye-bolt along the wire sections. But be careful — the circuit is live, and if you touch the metal, you’re going to get quite the shock!

Continue reading “Extreme Wire Buzz Game”

Stun Baton

Shocking Idea: Prank Stun Baton

[Christopher] has put together a Prank Stun Baton to annoy his friends. It delivers a slight shock to the person on the business end of the device. Oddly, it’s powered solely by static electricity, there is no battery here and the resulting injury is no worse than touching a door knob after scooting your socks around on some shag carpet.

The design is super simple and is effectively just a rudimentary capacitor. The main housing is a PVC pipe that acts as a dielectric in the ‘cap’ system. Two separate pieces of tin foil are wrapped around the inside and outside of the PVC pipe. These layers of tin foil provide a conductive path up to the a couple of screws stuck in the end of the baton. A ping-pong ball and some foam act as an insulator between the PVC and the screws.

To charge the baton it only has to be brought close to a source of static electricity, a tube TV will do the trick. Rubbing it with a piece of wool will also work. When this is done an electrostatic field is stored in the PVC between the two pieces of tin foil, one side takes on a positive charge and the other a negative charge creating an electric potential between the two screws at the end of the baton. When something (with a low-enough resistance) shorts the screws, the stored energy on the positive screw tries to go to the negative screw, shocking the unsuspecting victim.

Need something a little more powerful? You may want to check out this other stun baton.