Nebraskan Farmers Were Using Wind Turbines Before Environmentalism Was Invented

To a casual observer of public discourse here in 2024 it seem extremely odd that the issue of replacing coal fired power stations with wind turbines is a matter of controversy, whether in America or Europe it’s an issue which causes some sparks to fly. The Atlantic has a recent article with a set of pictures from a gentler time in which the industrious nature of Nebraskan farmers in the 1890s receives praise as they create a wide variety of home-made wind turbines.

Farmers have always been the best hardware hackers, using what they have at hand to solve their problems and create the things they need. Perhaps out image of agricultural wind power is one of commercially produced wind pumps, but these are the generation of home-made devices which preceded that. Some of them look conventional to modern eyes, but others such as the horizontal “Jumbo” turbines have little equivalent today.

It’s easy to forget with so many energy sources at our disposal, that in the past the locality affected the choice of motive power. The Netherlands doesn’t have windmills because they are pretty, but because hundreds of years ago they lacked handy coal mines or convenient heads of water. Similarly out in the Nebraskan prairies they had plenty of wind, and never the folk to pass up on an opportunity, they made the best of it. And we’re very glad over a century later, that someone took the time to record their work.

If you’re hungry for more old-style wind power, we’ve got you covered, meanwhile 19th century America was no stranger to clever ways to use power.

Thanks [Hugh Brown] for the tip.

An image of a desert with dramatically cloudy skies. In the middle of the image is a series of clay doorways with vertically-oriented wooden slats surrounding a central pole. These form the basis of a panemone windmill.

Help Wanted: Keep The World’s Oldest Windmills Turning

While the Netherlands is the country most known for its windmills, they were originally invented by the Persians. More surprisingly, some of them are still turning after 1,000 years.

The ancient world holds many wonders of technology, and some are only now coming back to the surface like the Antikythera Mechanism. Milling grain with wind power probably started around the 8th Century in Persia, but in Nashtifan, Iran they’ve been keeping the mills running generation-to-generation for over 1000 years. [Mohammed Etebari], the last windmill keeper is in need of an apprentice to keep them running though.

In a world where vertical axis wind turbines seem like a new-fangled fad, it’s interesting to see these panemone windmills are actually the original recipe. The high winds of the region mean that the timber and clay structure of the asbad structure housing the turbine is sufficient for their task without all the fabric or man-made composites of more modern designs. While drag-type turbines aren’t particularly efficient, we do wonder how some of the lessons of repairability might be used to enhance the longevity of modern wind turbines. Getting even 100 years out of a turbine would be some wicked ROI.

Wooden towers aren’t just a thing of the past either, with new wooden wind turbines soaring 100 m into the sky. Since you’ll probably be wanting to generate electricity and not mill grain if you made your own, how does that work anyway?

Continue reading “Help Wanted: Keep The World’s Oldest Windmills Turning”

Trees Turned Into Wind Turbines, Non-Destructively

Trees and forests are an incredibly important natural resource — not only for lumber and agricultural products, but also because they maintain a huge amount of biodiversity, stabilize their local environments, and help combat climate change as a way to sequester atmospheric carbon. But the one thing they don’t do is make electricity. At least, not directly. [Concept Crafted Creations] is working on solving this issue by essentially turning an unmodified tree into a kind of wind turbine.

The idea works by first attaching a linear generator to the trunk of a tree. This generator has a hand-wound set of coils on the outside, with permanent magnets on a shaft that can travel up and down inside the set of coils. The motion to power the generator comes from a set of ropes connected high up in the tree’s branches. When the wind moves the branches, the ropes transfer the energy to a 3D printed rotational mechanism attached to a gearbox, which then pumps the generator up and down. The more ropes, branches, and generators attached to a tree the more electricity can be produced.

Admittedly, this project is still a proof-of-concept, although the currently deployed prototype seems promising. [Concept Crafted Creations] hopes to work with others building similar devices to improve on the idea and build more refined prototypes in the future. It’s also not the only way of building a wind energy generator outside of the traditional bladed design, either. It’s possible to build a wind-powered generator with no moving parts that uses vibrations instead of rotational motion as well.

Continue reading “Trees Turned Into Wind Turbines, Non-Destructively”

An L-shaped orange mounting structure with two white reservoirs on top, a set of pumps on the outer bottom edges, and a membrane cell bolted together in the center. The parts are connected by a series of transparent tubes.

Open Source Residential Energy Storage

Battery news typically covers the latest, greatest laboratory or industry breakthroughs to push modern devices further and faster. Could you build your own flow battery stationary storage for home-built solar and wind rigs though?

Based on the concept of appropriate technology, the system from the Flow Battery Research Collective will be easy to construct, easy to maintain, and safe to operate in a residential environment. Current experiments are focusing on Zn/I chemistry, but other aqueous chemistries could be used in the future. Instead of an ion exchange membrane, the battery uses readily attainable photo paper and is already showing similar order of magnitude performance to lab-developed cells.

Any components that aren’t off-the-shelf have been designed in FreeCAD. While they can be 3D printed, the researchers have found traditional milling yields better results which isn’t too surprising when you need something water-tight. More work is needed, but it is promising work toward a practical, DIY-able energy storage solution.

If you’re looking to build your own open source wind turbine or solar cells to charge up a home battery system, then we’ve got you covered. You can also break the chains of the power grid with off-the-shelf parts.

Hackaday Links Column Banner

Hackaday Links: July 28, 2024

What is this dystopia coming to when one of the world’s largest tech companies can’t find a way to sufficiently monetize a nearly endless stream of personal data coming from its army of high-tech privacy-invading robots? To the surprise of almost nobody, Amazon is rolling out a paid tier to their Alexa service in an attempt to backfill the $25 billion hole the smart devices helped dig over the last few years. The business model was supposed to be simple: insinuate an always-on listening device into customers’ lives to make it as easy as possible for them to instantly gratify their need for the widgets and whatsits that Amazon is uniquely poised to deliver, collecting as much metadata along the way as possible; multiple revenue streams — what could go wrong? Apparently a lot, because the only thing people didn’t do with Alexa was order stuff. Now Amazon is reportedly seeking an additional $10 a month for the improved AI version of Alexa, which will be on top of the ever-expanding Amazon Prime membership fee, currently at an eye-watering $139 per year. Whether customers bite or not remains to be seen, but we think there might be a glut of Echo devices on the second-hand market in the near future. We hate to say we told you so, but — ah, who are we kidding? We love to say we told you so.

Continue reading “Hackaday Links: July 28, 2024”

A rectangular box with a purple section sandwiched between two red sections sits on a black tabletop. The end of the box is open. Black and red wires run out of the back of the box to a breadboard.

Improving Wind Turbine Testing With A Better Air Source

When comparing the efficiency of different wind turbine blade designs, [AdamEnt] found using a hair dryer wasn’t the best tool for the job. Enter his new 3D-printed wind tunnel.

After several prototypes, [AdamEnt] decided on a design that exploits slicer infill to create a flow straightener without having to do any tedious modeling of a lattice. Combined with a box on both ends of the straightener to constrain the flow, he has a more controllable air source with laminar instead of turbulent flow for testing his wind turbines.

The BLDC motor driving the air is attached to a toroidal blade of MIT fame. We get a little bit of the math behind calculating wind turbine efficiency and see a quick test of a blade placed next to the outlet of the air source at the end of the video.

If you’re planning on building your own wind tunnel, we’ve covered a few. We’ve even seen one that goes up to Mach 20, although that probably wouldn’t be useful for wind turbine design!

Continue reading “Improving Wind Turbine Testing With A Better Air Source”

Bad Experiences With A Cheap Wind Turbine

If you’ve got a property with some outdoor space and plenty of wind, you might consider throwing up a windmill to generate some electricity. Indeed, [The Broject List] did just that. Only, his experience was a negative one, having purchased a cheap windmill online. He’s warning off others from suffering the same way by explaining what was so bad about the product he bought.

The windmill in question was described as a “VEVOR Windturbine”, which set him back around 100 euros, and claimed to be capable of producing 600 watts at 12 volts. He starts by showing how similar turbines pop up for sale all over the Internet, with wildly inflated specs that have no relation to reality. Some sellers even charge over 500 euros for the same basic device.

He then demonstrates the turbine operating at wind speeds of approximately 50 km/h. The output is dismal, a finding also shared by a number of other YouTube channels out there. Examining the construction of the wind turbine’s actual generator, he determines that it’s nowhere near capable of generating 600 watts. He notes the poorly-manufactured rotor and aluminium coils as particular disappointments. He concludes it could maybe generate 5 watts at most.

Sadly, it’s easy to fall into this trap when buying online. That’s where it pays to do your research before laying down your hard-earned cash. Continue reading “Bad Experiences With A Cheap Wind Turbine”