How Smart is the Grid?

Marketing and advertising groups often have a tendency to capitalize on technological trends faster than engineers and users can settle into the technology itself. Perhaps it’s no surprise that it is difficult to hold back the motivation to get a product to market and profit. Right now the most glaring example is the practice of carelessly putting WiFi in appliances and toys and putting them on the Internet of Things, but there is a similar type of fiasco playing out in the electric power industry as well. Known as the “smart grid”, an effort is underway to modernize the electric power grid in much the same way that the Internet of Things seeks to modernize household appliances, but to much greater and immediate benefit.

A Cutler-Hammer industrial breaker ominously predicts the coming confusion in the smart grid arena.
Photo by Bryan Cockfield

To that end, if there’s anything in need of modernization it’s the electric grid. Often still extensively using technology that was pioneered in the 1800s like synchronous generators and transformers (not to mention metering and billing techniques that were perfected before the invention of the transistor), there is a lot of opportunity to add oversight and connectivity to almost every part of the grid from the power plant to the customer. Additionally, most modern grids are aging rapidly at the same time that we are asking them to carry more and more electricity. Modernization can also help the aging infrastructure become more efficient at delivering energy.

While the term “smart grid” is as nebulous and as ill-defined as “Internet of Things” (even the US Government’s definition is muddied and vague), the smart grid actually has a unifying purpose behind it and, so far, has been an extremely useful way to bring needed improvements to the power grid despite the lack of a cohesive definition. While there’s no single thing that suddenly transforms a grid into a smart grid, there are a lot of things going on at once that each improve the grid’s performance and status reporting ability.

Continue reading “How Smart is the Grid?”

Living off the Grid, on Water Power

When you think of living off the grid, you often think of solar power. But if you’ve got a good head, and enough flow, water power can provide a much more consistent flow of electrons. All it requires is a little bit of engineering, epic amounts of manual labor, and some tricks of the trade, and you’ll have your own miniature hydroelectric power plant.

[Homo Ludens], the playful ape, has what looks like a fantastic self-sufficient home/cabin in a beautiful part of Chile. His webpages are a tremendous diary of DIY, but the microhydro plant stands out.

You might expect that building a hydro plant involves a lot of piping, and trenching to lie that pipe in, but the exact extent, documented in many photos, is sobering. At places, the pipe needed to be bent, and [Homo Ludens] built a wire-mesh pipe heater to facilitate the work — with the help of a few friends to weigh the pipe down at either end and create the bend. The self-wound power transformer is also a beauty.

There’s a lot more detail here than we can possibly get into, so go check it out. And if you’re in the mood for more hydro, we’ve recently run a writeup of a less ambitious, but still tidy, project that you should see. Or you could just rip apart an old washing machine.

Thanks [Patrick] for the great tip!

5 Tones, 1 Arduino

Because the Arduino is in such high demand for producing multiple musical tones at the same time; [Jeremy Blum] has successfully figured out the math and other necessaries that will take your once previously single tone producing MCU and turn it into a 5 tone producing machine. unsurprisingly its really just some creative use of PWM control but it all works out in the end anyway and helps prevent you from purchasing additional sound generating chips. This truly does open up some new doors, as [Jeremy] shows with his still in production thingamakit like project: ReacXion.

YM2149 gets new life

[MicroMinded] took us way back to our childhoods with his experiments and subsequent YMstream music player based on the Yamaha YM2149 sound generator used in old arcade systems, computers, and even phones (think chiptune). This reminds us of the Chipophone, only this time the sound is achieved from ICs used back in the day, rather than MCU waveforms.

There is still some work to be done to make the music player have a bit more functionality, but for now source is available if you want to make your own. Of course you might come across a small problem; finding an SSG is a tad bit more difficult than say, an Arduino. If a good resource is found, please share it in the comments!

[Thank you Andrew Kretschmer for sending in the chiptune mp3s]