The Hackaday Prize: An Open Electric Wheelchair

[Irene Sans] and [Alvaro Ferrán Cifuentes] feel that electric wheelchairs are still too expensive. On top of that, as each person’s needs are a little different, usually don’t exactly fit the problems a wheelchair user might face. To this end they’ve begun the process of creating an open wheelchair design which they’ve appropriately dubbed OpenChair.

As has been shown in the Hackaday Prize before, there’s a lot of things left to be desired in the assistive space. Things are generally expensive. This would be fine, but often insurance doesn’t cover it or it’s out of the range of those in developing nations.  As always, the best way to finish is to start, so that’s just what [Irene] and [Alvaro] has done.

They based their initial design on the folding wheel chair we all know. It’s robust enough for daily use and is fairly standard around the world. They designed a set of accessories to make the wheelchair more livable for daily use as well as incorporating the controls.

The next problem was locomotion. Finding an off-the-shelf motor that was powerful enough without breaking the budget was proving  difficult, but they had an epiphany. Why not use mass production toy crap to their advantage. The “hoverboards” that were all the rage this past commerical holiday season were able to roll a person around, so naturally a wheelchair would be within the power range.

They extracted the two 350 watt hub motors, batteries, and control boards. It took a bit of reverse engineering but they were able to get the hub drive motors of the hoverboard integrated with the controls on their wheelchair.

In the end they were able to cut the price of a regular electric wheelchair in half with their first iteration and set the foundation for future work on an open electric wheelchair system. Certainly more work could bring even better improvements.

A Better Way to Measure Your Impact on the World

Close your eyes and think of an electric wheelchair. What do you see? Is it sleek, futuristic, and elegant… worthy of the moniker: iChair? No, no it is not. It’s a boxy tank-like thing with grey knobbed wheels that is powered with lead-acid batteries. Why is that?

Obviously there are alternatives. Just yesterday I came across UPnRIDE (that name is sore on the eyes but speak it aloud and you’ll get it). It’s an electric wheelchair that converts into a standing position. And it looks comparatively sleek and modern. And it’s not the first time I’ve seen the idea before. One of my favorite articles over the years is still our coverage of Tek RMD, a similar standing robotic wheelchair design. So why is it I don’t see these in the wild? Why is it I only remember seeing the concept twice in four years?

Continue reading “A Better Way to Measure Your Impact on the World”

Cyborg Olympics is Coming this Fall

You heard right. There’s a team of scientists in Europe who are arranging the world’s first Cyborg Olympics, called the Cybathlon. Hosted in Zurich this October, it aims to help gauge the performance and advancement in the latest developments of prosthesis and other devices that can augment human ability beyond what is considered normal or baseline.

The best example of this is [Oscar Pistorius] — the man with fiberglass spring legs. He’s a double amputee who can run at an Olympic level — or maybe even faster. With the Cybathlon, his prosthesis would not only be accepted, but encouraged to help demonstrate and further the technology by adding a competitive angle to the companies manufacturing them.  Continue reading “Cyborg Olympics is Coming this Fall”

Kate Reed: The Creative Process in Action

Kate Reed is an artist. Kate Reed also builds hand-driven wheelchair accessories that work with any wheelchair. Wait, what? These things don’t have to be separate skills. We’re living in the age of artisanal creation and Kate is a perfect example that you need to embody all skills. She’s an artist who follows a creative idea from inception through to implementation. Check out her talk on the Creative Process in Action from the Hackaday SuperConference, then jump past the break for some more details on what she’s been building and how she build her diverse set of skills.

Continue reading “Kate Reed: The Creative Process in Action”

The Gaze-Controlled Wheelchair that Won the Hackaday Prize

The 2015 Hackaday Prize challenged people to build something that matters. Specifically, to solve a problem faced by a lot of people and to make the solution as open as possible. If the average hacker can build it, it puts the power to vastly improve someone’s life in their hands. This is a perfect example of how powerful Open Design can be.

Patrick Joyce, Steve Evans, and David Hopkinson, developed a way to control an electric wheelchair using eye movements. The project, called Eyedrivomatic, is a set of non-invasive hardware modules that connect the wheelchair joystick with existing Eyegaze technology.

You’re probably already familiar with Eyegaze, which allows people suffering from diseases like MND/ALS to speak through a computer using nothing but their eyes. Eyedrivomatic extends this gaze control to drive a wheelchair. The catch is that the wheelchair’s user may not actually own the chair, and so permanent modifications cannot be made.

Thus Eyedrivomatic connects a wheelchair to the existing Eyegaze hardware without permanently altering either. This has never been done before, and the high level to which the team executed this project netted them the Grand Prize of the 2015 Hackaday Prize. The team will receive their choice of a Trip into Space or $196,883.

Check out their acceptance video, then join us after the break to learn what went into this amazing undertaking.

Continue reading “The Gaze-Controlled Wheelchair that Won the Hackaday Prize”

Hackaday Prize Entry: EyeDrivOMatic

There are a lot of projects in the Hackaday Prize aimed at improving the lives of those of us who are disabled or otherwise handicapped. A good 3D printed prosthetic is a natural idea for the competition, as are projects for the blind and deaf. [Patrick Joyce], [Steve Evans] and [David Hopkinson] are helping a much more debilitating disease: Motor Neuron Disease, or ALS. [Steve] and [Patrick] both have ALS, and they’re working on a project that will use the movement of their eyes to move their wheelchair.

The project began as an idea [Patrick] had a few years ago – why not use commercial eye tracking technology to drive a wheelchair. Eye tracking technology is a reasonably well-solved problem but for some inexplicable reason there are no clear ways to connect this system to a wheelchair.

Over the last few years, [Patrick] taught himself Arduino and Processing to prototype a device that would connect to a computer running an eye tracking tool and to translate this into servo movements. A small 3D printed contraption is connected to the joystick of [Patrick]’s wheelchair, and with just a little bit more code, he can drive his wheelchair around just by looking at a screen. It’s a great use of 3D printing and the humble Arduino, but it’s absolutely impressive this technology hasn’t existed before.

Because [Patrick] can build pretty much whatever hardware he wants, he’s also added a few neat features. The ‘Brain Box’ for this build needs two outputs for servos, but [Patrick] added two more for other purposes. He’ll be mounting a Nerf blaster to the side of his chair, but he also has other ideas of adding a fan, a robot arm, or even IR or RF transmitters; he’ll be able to control his TV with just his eyes.

The 2015 Hackaday Prize is sponsored by:

Eye-Controlled Wheelchair Advances from Talented Teenage Hackers

[Myrijam Stoetzer] and her friend [Paul Foltin], 14 and 15 years old kids from Duisburg, Germany are working on a eye movement controller wheel chair. They were inspired by the Eyewriter Project which we’ve been following for a long time. Eyewriter was built for Tony Quan a.k.a Tempt1 by his friends. In 2003, Tempt1 was diagnosed with the degenerative nerve disorder ALS  and is now fully paralyzed except for his eyes, but has been able to use the EyeWriter to continue his art.

This is their first big leap moving up from Lego Mindstorms. The eye tracker part consists of a safety glass frame, a regular webcam, and IR SMD LEDs. They removed the IR blocking filter from the webcam to make it work in all lighting conditions. The image processing is handled by an Odroid U3 – a compact, low cost ARM Quad Core SBC capable of running Ubuntu, Android, and other Linux OS systems. They initially tried the Raspberry Pi which managed to do just about 3fps, compared to 13~15fps from the Odroid. The code is written in Python and uses OpenCV libraries. They are learning Python on the go. An Arduino is used to control the motor via an H-bridge controller, and also to calibrate the eye tracker. Potentiometers connected to the Arduino’s analog ports allow adjusting the tracker to individual requirements.

The web cam video stream is filtered to obtain the pupil position, and this is compared to four presets for forward, reverse, left and right. The presets can be adjusted using the potentiometers. An enable switch, manually activated at present is used to ensure the wheel chair moves only when commanded. Their plan is to later replace this switch with tongue activation or maybe cheek muscle twitch detection.

First tests were on a small mockup robotic platform. After winning a local competition, they bought a second-hand wheel chair and started all over again. This time, they tried the Raspberry Pi 2 model B, and it was able to work at about 8~9fps. Not as well as the Odroid, but at half the cost, it seemed like a workable solution since their aim is to make it as cheap as possible. They would appreciate receiving any help to improve the performance – maybe improving their code or utilising all the four cores more efficiently. For the bigger wheelchair, they used recycled car windshield wiper motors and some relays to switch them. They also used a 3D printer to print an enclosure for the camera and wheels to help turn the wheelchair. Further details are also available on [Myrijam]’s blog. They documented their build (German, pdf) and have their sights set on the German National Science Fair. The team is working on English translation of the documentation and will release all design files and source code under a CC by NC license soon.